IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20110048.html
   My bibliography  Save this paper

A Bayesian Analysis of Unobserved Component Models using Ox

Author

Listed:
  • Charles S. Bos

    (VU University Amsterdam)

Abstract

This discussion paper led to a publication in the 'Journal of Statistical Software' , 41(13), 1-24. Estimation of the volatility of time series has taken off since the introduction of the GARCH and stochastic volatility models. While variants of the GARCH model are applied in scores of articles, use of the stochastic volatility model is less widespread. In this articleit is argued that one reason for this difference is the relative difficulty of estimating the unobserved stochastic volatility, and the varying approaches that have been taken for such estimation.In order to simplify the comprehension of these estimation methods, the main methods for estimating stochastic volatility are discussed, with focus on their commonalities. In this manner, the advantages of each method are investigated, resulting in a comparisonof the methods for their efficiency, difficulty-of-implementation, and precision.

Suggested Citation

  • Charles S. Bos, 2011. "A Bayesian Analysis of Unobserved Component Models using Ox," Tinbergen Institute Discussion Papers 11-048/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20110048
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/11048.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    2. Yasutomo Murasawa, 2016. "The Beveridge–Nelson decomposition of mixed-frequency series," Empirical Economics, Springer, vol. 51(4), pages 1415-1441, December.
    3. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    4. repec:jss:jstsof:41:i01 is not listed on IDEAS
    5. Nonejad Nima, 2016. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," Journal of Time Series Econometrics, De Gruyter, vol. 8(1), pages 55-90, January.

    More about this item

    Keywords

    Stochastic volatility; estimation; methodology;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20110048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.