IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20010023.html
   My bibliography  Save this paper

Tail Behavior of Credit Loss Distributions for General Latent Factor Models

Author

Listed:
  • André Lucas

    (Vrije Universiteit Amsterdam)

  • Pieter Klaassen

    (ABN AMRO Bank NV)

  • Peter Spreij

    (University of Amsterdam)

  • Stefan Straetmans

    (Maastricht University)

Abstract

Using a limiting approach to portfolio credit risk, we obtain analyticexpressions for the tail behavior of the distribution of credit losses. We showthat in many cases of practical interest the distribution of these losses haspolynomial ('fat') rather than exponential ('thin') tails. Our modelingframework encompasses the models available in the literature. Defaults aretriggered by a general latent factor model involving systematic andidiosyncratic risk. We show explicitly how the tail behavior of the distributionof these two risk factors relates to the tail behavior of the credit lossdistribution. Even if the distributions of both risk factors are thin-tailed,the credit loss distribution may have a finite tail index (polynomial tails). Ifidiosyncratic risk exhibits thinner tails than systematic risk, the credit lossdensity actually increases towards the maximum credit loss. This unconventionalbehaviour of the credit loss density has not been reported earlier in theliterature. We also derive analytically the interaction between portfolioquality and credit loss tail behavior and find a striking difference between twowell-known modeling frameworks for portfolio credit risk: CreditMetrics andCreditRisk+.

Suggested Citation

  • André Lucas & Pieter Klaassen & Peter Spreij & Stefan Straetmans, 2001. "Tail Behavior of Credit Loss Distributions for General Latent Factor Models," Tinbergen Institute Discussion Papers 01-023/2, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20010023
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/01023.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lucas, Andre & Klaassen, Pieter & Spreij, Peter & Straetmans, Stefan, 2001. "An analytic approach to credit risk of large corporate bond and loan portfolios," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1635-1664, September.
    2. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    3. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    4. repec:bla:jfinan:v:53:y:1998:i:4:p:1363-1387 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsieh, Ming-Hua & Lee, Yi-Hsi & Shyu, So-De & Chiu, Yu-Fen, 2019. "Estimating multifactor portfolio credit risk: A variance reduction approach," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    2. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    3. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    4. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
    5. Albrecht, Peter, 2005. "Kreditrisiken - Modellierung und Management: Ein Überblick," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 1(2), pages 22-152.
    6. Hayette Gatfaoui, 2003. "How Does Systematic Risk Impact US Credit Spreads? A Copula Study," Risk and Insurance 0308002, University Library of Munich, Germany.
    7. Sak Halis, 2010. "Increasing the number of inner replications of multifactor portfolio credit risk simulation in the t-copula model," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 361-377, January.
    8. Bologov , Yaroslav, 2013. "A copula-based approach to portfolio credit risk modeling," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 45-66.
    9. Andre Lucas & Bernd Schwaab & Xin Zhang, 2013. "Measuring Credit Risk in a Large Banking System: Econometric Modeling and Empirics," Tinbergen Institute Discussion Papers 13-063/IV/DSF56, Tinbergen Institute, revised 13 Oct 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, P. & Gourieroux, C., 2005. "Migration correlation: Definition and efficient estimation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 865-894, April.
    2. Koopman, Siem Jan & Lucas, Andre & Klaassen, Pieter, 2005. "Empirical credit cycles and capital buffer formation," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 3159-3179, December.
    3. Lucas, Andre & Klaassen, Pieter, 2006. "Discrete versus continuous state switching models for portfolio credit risk," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 23-35, January.
    4. Siem Jan Koopman & André Lucas & Pieter Klaassen, 2002. "Pro-Cyclicality, Empirical Credit Cycles, and Capital Buffer Formation," Tinbergen Institute Discussion Papers 02-107/2, Tinbergen Institute.
    5. Carling, Kenneth & Rönnegård, Lars & Roszbach, Kasper, 2004. "Is Firm Interdependence within Industries Important for Portfolio Credit Risk?," Working Paper Series 168, Sveriges Riksbank (Central Bank of Sweden).
    6. Bandyopadhyay, Arindam, 2010. "Understanding the Effect of Concentration Risk in the Banks’ Credit Portfolio: Indian Cases," MPRA Paper 24822, University Library of Munich, Germany.
    7. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    8. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    9. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    10. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    11. Gatfaoui Hayette, 2004. "Idiosyncratic Risk, Systematic Risk and Stochastic Volatility: An Implementation of Merton’s Credit Risk Valuation," Finance 0404004, University Library of Munich, Germany.
    12. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    13. Kim, Joocheol & Lee, Duyeol, 2007. "Simulation based approach for measuring concentration risk," MPRA Paper 2968, University Library of Munich, Germany, revised 19 Apr 2007.
    14. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    15. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    16. Albrecht, Peter, 2005. "Kreditrisiken - Modellierung und Management: Ein Überblick," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 1(2), pages 22-152.
    17. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    18. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 221-262, March.
    19. Feng, D. & Gourieroux, C. & Jasiak, J., 2008. "The ordered qualitative model for credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 111-130, January.
    20. M. Hashem Pesaran & Til Schuermann & Bjorn-Jakob Treutler, 2007. "Global Business Cycles and Credit Risk," NBER Chapters, in: The Risks of Financial Institutions, pages 419-469, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20010023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.