IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19980028.html
   My bibliography  Save this paper

A Pricing Model for American Options with Stochastic Interest Rates

Author

Listed:
  • Bert Menkveld

    (VU University Amsterdam)

  • Ton Vorst

    (VU University Amsterdam)

Abstract

In this paper we introduce a new methodology to price American put options under stochastic interestrates. The method is a combination of an analytic approach and a binomial tree approach. We constructa binomial tree for the forward risk adjusted tree and calculate analytically the expected early exercisevalue in each point. For American puts with stochastic interest rates the correlation between the stockprice process has different influences on the European option values and the early exercise premiums.This results in a nonmonotonic relation between this correlation and the American put option value.Furthermore, there is evidence that the early exercise premium due to stochastic interest rates is muchlarger than established before by other researchers.

Suggested Citation

  • Bert Menkveld & Ton Vorst, 1998. "A Pricing Model for American Options with Stochastic Interest Rates," Tinbergen Institute Discussion Papers 98-028/2, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19980028
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/98028.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho, T S & Stapleton, Richard C & Subrahmanyam, Marti G, 1997. "The Valuation of American Options with Stochastic Interest Rates: A Generalization of the Geske-Johnson Technique," Journal of Finance, American Finance Association, vol. 52(2), pages 827-840, June.
    2. Amin, Kaushik I & Bodurtha, James N, Jr, 1995. "Discrete-Time Valuation of American Options with Stochastic Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 193-234.
    3. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    2. Chang, Chuang-Chang, 2001. "Efficient procedures for the valuation and hedging of American currency options with stochastic interest rates," Journal of Multinational Financial Management, Elsevier, vol. 11(3), pages 241-268, July.
    3. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    4. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2022. "The American put with finite‐time maturity and stochastic interest rate," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1170-1213, October.
    5. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    6. Ho, T. S. & Stapleton, Richard C. & Subrahmanyam, Marti G., 1997. "The valuation of American options on bonds1," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1487-1513, December.
    7. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    10. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    11. B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
    12. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    13. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Chang, Chuang-Chang & Tsay, Min-Hung & Lin, Jun-Biao, 2018. "A generalized Brennan–Rubinstein approach for valuing options with stochastic interest rates," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 92-99.
    15. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    16. Lung-Fu Chang & Mao-Wei Hung, 2006. "Valuation of vulnerable American options with correlated credit risk," Review of Derivatives Research, Springer, vol. 9(2), pages 137-165, September.
    17. Luca Barzanti & Corrado Corradi & Martina Nardon, 2006. "On the efficient application of the repeated Richardson extrapolation technique to option pricing," Working Papers 147, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    18. Lindset, Snorre & Lund, Arne-Christian, 2007. "A Monte Carlo approach for the American put under stochastic interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1081-1105, April.
    19. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    20. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19980028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.