IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2014-10.html
   My bibliography  Save this paper

Learning to be Risk Averse?

Author

Listed:
  • Robert E. Marks

    (School of Economics, Australian School of Business, the University of New South Wales)

Abstract

The purpose of this research is to search for the best (highest performing) risk profile of agents who successively choose among risky prospects. An agent’s risk profile is his attitude to perceived risk, which can vary from risk preferring to risk neutral (an expected-value decision maker) to risk averse. We use the Genetic Algorithm to search in the complex stochastic space of repeated lotteries. We find that agents with a CARA utility function learn to possess risk-neutral risk profiles. Since CARA utility functions are wealth-independent, this is not surprising. When agents have wealth-dependent, CRRA utility functions, however, they also learn to possess risk profiles that are about risk neutral (from slightly risk-averse to even slightly risk-preferring), which is surprising.

Suggested Citation

  • Robert E. Marks, 2014. "Learning to be Risk Averse?," Discussion Papers 2014-10, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2014-10
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2014-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    2. Rabin, Matthew, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Department of Economics, Working Paper Series qt731230f8, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    3. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    4. Arthur, W Brian, 1991. "Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality," American Economic Review, American Economic Association, vol. 81(2), pages 353-359, May.
    5. DellaVigna, Stefano & LiCalzi, Marco, 2001. "Learning to make risk neutral choices in a symmetric world," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 19-37, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    2. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    3. Kerri Brick & Martine Visser & Justine Burns, 2012. "Risk Aversion: Experimental Evidence from South African Fishing Communities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 133-152.
    4. Koszegi, Botond & Rabin, Matthew, 2004. "A Model of Reference-Dependent Preferences," Department of Economics, Working Paper Series qt0w82b6nm, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    5. Chorvat, Terrence, 2006. "Taxing utility," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 35(1), pages 1-16, February.
    6. Raj Chetty, 2004. "Consumption Commitments, Unemployment Durations, and Local Risk Aversion," NBER Working Papers 10211, National Bureau of Economic Research, Inc.
    7. Roberts, Michael J. & O'Donoghue, Erik J. & Key, Nigel D., 2003. "Chemical And Fertilizer Applications In Response To Crop Insurance: Evidence From Census Micro Data," 2003 Annual meeting, July 27-30, Montreal, Canada 21895, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Dilger, Alexander, 2022. "Der Zufall in den Wirtschaftswissenschaften," Discussion Papers of the Institute for Organisational Economics 5/2022, University of Münster, Institute for Organisational Economics.
    9. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    10. Sugden, Robert & Wang, Mengjie & Zizzo, Daniel John, 2019. "Take it or leave it: Experimental evidence on the effect of time-limited offers on consumer behaviour," Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 1-23.
    11. Aloysius, John A., 2003. "Rational escalation of costs by playing a sequence of unfavorable gambles: the martingale," Journal of Economic Behavior & Organization, Elsevier, vol. 51(1), pages 111-129, May.
    12. Enrico Diecidue & Peter Wakker & Marcel Zeelenberg, 2007. "Eliciting decision weights by adapting de Finetti’s betting-odds method to prospect theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 179-199, June.
    13. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    14. Christiane Ernst & Christian Thöni, 2013. "Bimodal Bidding in Experimental All-Pay Auctions," Games, MDPI, vol. 4(4), pages 1-16, October.
    15. Carpentier, A. & Reboud, X., 2018. "Why farmers consider pesticides the ultimate in crop protection: economic and behavioral insights," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277528, International Association of Agricultural Economists.
    16. Franz Dietrich & Antonios Staras & Robert Sugden, 2021. "Savage’s response to Allais as Broomean reasoning," Journal of Economic Methodology, Taylor & Francis Journals, vol. 28(2), pages 143-164, April.
    17. Sean Fahle & Santiago I. Sautua, 2021. "How do risk attitudes affect pro-social behavior? Theory and experiment," Theory and Decision, Springer, vol. 91(1), pages 101-122, July.
    18. Schunk, Daniel, 2009. "Behavioral heterogeneity in dynamic search situations: Theory and experimental evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1719-1738, September.
    19. Uri Gneezy & Yoram Halevy & Brian Hall & Theo Offerman & Jeroen van de Ven, 2024. "How Real is Hypothetical? A High-Stakes Test of the Allais Paradox," Working Papers tecipa-783, University of Toronto, Department of Economics.
    20. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2013. "Salience and Consumer Choice," Journal of Political Economy, University of Chicago Press, vol. 121(5), pages 803-843.

    More about this item

    Keywords

    risk profile; decision-making under uncertainty; simulation;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2014-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.