IDEAS home Printed from https://ideas.repec.org/p/stc/stcp3f/1998113f.html
   My bibliography  Save this paper

Mobilite intergenerationnelle des gains et du revenu des hommes au Canada : etude basee sur les donnees longitudinales de l'impot sur le revenu

Author

Listed:
  • Heisz, Andrew
  • Corak, Miles

Abstract

Le but de la presente analyse est d'etablir une estimation exacte du degre de mobilite intergenerationnelle du revenu au Canada. A partir des donnees sur l'impot sur le revenu pour quelque 400 000 paires pere-fils, nous en sommes arrives a une elasticite intergenerationnelle des gains dont la valeur est d'environ 0,2. La mobilite des gains tend a etre legerement superieure a celle du revenu; cependant, les methodes non parametriques revelent une non-linearite significative dans ces deux relations. Par ailleurs, la mobilite intergenerationnelle des gains est plus marquee a l'extremite inferieure de la distribution qu'a son extremite superieure et elle affiche une forme en V inverse ailleurs dans la distribution. Dans le cas du revenu, la mobilite intergenerationnelle suit essentiellement le meme profil, bien qu'elle soit beaucoup moins grande a l'extremite superieure de la distribution.

Suggested Citation

  • Heisz, Andrew & Corak, Miles, 1998. "Mobilite intergenerationnelle des gains et du revenu des hommes au Canada : etude basee sur les donnees longitudinales de l'impot sur le revenu," Direction des études analytiques : documents de recherche 1998113f, Statistics Canada, Direction des études analytiques.
  • Handle: RePEc:stc:stcp3f:1998113f
    as

    Download full text from publisher

    File URL: https://www150.statcan.gc.ca/n1/fr/catalogue/11F0019M1998113
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2016. "Stock Market Volatility and Learning," Journal of Finance, American Finance Association, vol. 71(1), pages 33-82, February.
    2. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    3. Chen, Zhenxi, 2016. "Regimes dependent speculative trading: Evidence from the United States housing market," FinMaP-Working Papers 66, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    4. Grosche, Stephanie & Heckelei, Thomas, 2014. "Price dynamics and financialization effects in corn futures markets with heterogeneous traders," Discussion Papers 172077, University of Bonn, Institute for Food and Resource Economics.
    5. Shintani, Mototsugu & Linton, Oliver, 2004. "Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos," Journal of Econometrics, Elsevier, vol. 120(1), pages 1-33, May.
    6. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    7. Ghonghadze, Jaba & Lux, Thomas, 2015. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," FinMaP-Working Papers 38, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    8. Katsuhiro Oshima, 2019. "Heterogeneous Beliefs, Monetary Policy, and Stock Price Volatility," KIER Working Papers 1013, Kyoto University, Institute of Economic Research.
    9. Zhenxi Chen & Weihong Huang & Huanhuan Zheng, 2018. "Estimating heterogeneous agents behavior in a two-market financial system," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 491-510, October.
    10. Klaus Adam & Albert Marcet & Johannes Beutel, 2017. "Stock Price Booms and Expected Capital Gains," American Economic Review, American Economic Association, vol. 107(8), pages 2352-2408, August.
    11. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    12. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    13. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    14. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    15. Mikhail Anufriev & Jasmina Arifovic & John Ledyard & Valentyn Panchenko, 2013. "Efficiency of continuous double auctions under individual evolutionary learning with full or limited information," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 539-573, July.
    16. Chen, Zhenxi, 2014. "Estimating heterogeneous agents behavior with different investment horizons in stock markets," FinMaP-Working Papers 5, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:stc:stcp3f:1998113f. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Brown (email available below). General contact details of provider: https://edirc.repec.org/data/stagvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.