IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2024-18.html
   My bibliography  Save this paper

Generalized Optimization Algorithms for Complex Models

Author

Listed:
  • Mario Martinoli
  • Raffaello Seri
  • Fulvio Corsi

Abstract

Linking the statistic and the machine learning literature, we provide new general results on the convergence of stochastic approximation schemes and inexact Newton methods. Building on these results, we put forward a new optimization scheme that we call generalized inexact Newton method (GINM). We extensively discuss the theoretical and the computational aspects of the GINM. The results apply to both deterministic and stochastic approximation schemes, and are particular effective in the case in which the objective function to be optimized is highly irregular and/or the stochastic equicontinuity hypothesis is violated. Examples are common in dynamic discrete choice models and complex simulation models characterized by nonlinearities and high levels of heterogeneity. The theory is supported by extensive Monte Carlo experiments.

Suggested Citation

  • Mario Martinoli & Raffaello Seri & Fulvio Corsi, 2024. "Generalized Optimization Algorithms for Complex Models," LEM Papers Series 2024/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2024/18
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2024-18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    2. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    3. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    4. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(4), pages 518-552, December.
    5. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    6. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    7. Seri, Raffaello, 2022. "Computing the asymptotic distribution of second-order U- and V-statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    8. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristensen, Dennis & SalaniƩ, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    2. Paul Gertler & Roland Sturm & Bruce Davidson, 1994. "Information and the Demand for Supplemental Medicare Insurance," NBER Working Papers 4700, National Bureau of Economic Research, Inc.
    3. Dennis Kristensen & Bernard SalaniƩ, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    4. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. Matthew Gentzkow, 2006. "Valuing New Goods in a Model with Complementarities: Online Newspapers," NBER Working Papers 12562, National Bureau of Economic Research, Inc.
    6. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    7. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    8. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
    9. Chihwa Kao & Lung-fei Lee & Mark M. Pitt, 2001. "Simulated Maximum Likelihood Estimation of the Linear Expenditure System with Binding Non-Negativity Constraints," Annals of Economics and Finance, Society for AEF, vol. 2(1), pages 215-235, May.
    10. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    11. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    12. repec:dgr:rugsom:96b22 is not listed on IDEAS
    13. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    14. Hahn, Jinyong & Liu, Xueyuan, 2022. "Jackknife bias reduction for simulated maximum likelihood estimator of discrete choice models," Economics Letters, Elsevier, vol. 219(C).
    15. Anindya Biswas & Biswajit Mandal, 2016. "Estimating Preference Parameters From Stock Returns Using Simulated Method Of Moments," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-13, March.
    16. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    17. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    18. Jakob Grazzini & Matteo G. Richiardi, 2013. "Consistent Estimation of Agent-Based Models by Simulated Minimum Distance," LABORatorio R. Revelli Working Papers Series 130, LABORatorio R. Revelli, Centre for Employment Studies.
    19. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    20. Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
    21. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.

    More about this item

    Keywords

    Optimization; stochastic approximation; Newton-Raphson methods; asymptotic convergence; M-estimation; stochastic equicontinuity;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2024/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.