IDEAS home Printed from https://ideas.repec.org/p/sru/ssewps/134.html
   My bibliography  Save this paper

Indicators for Complex Innovation Systems

Author

Abstract

Innovation systems are complex systems that can exhibit scaling and emergent properties. Predictable and measurable scaling correlations exist between measures commonly used to characterize innovation systems and national economies. This paper examines scaling relationships between GERD & GDP and between GDP & population and uses them to construct scale-independent indicators of the European and Canadian innovation systems. It discusses the theory and practice of building scale- independent indicators and scale-independent models. The theory is based on knowledge gathered from the study of complex systems. The practice is illustrated using OECD and Statistics Canada data commonly used to construct conventional indicators.

Suggested Citation

  • Sylvan Katz, 2005. "Indicators for Complex Innovation Systems," SPRU Working Paper Series 134, SPRU - Science Policy Research Unit, University of Sussex Business School.
  • Handle: RePEc:sru:ssewps:134
    as

    Download full text from publisher

    File URL: http://www.sussex.ac.uk/spru/documents/sewp134.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. E. Stanley & V. Plerou, 2001. "Scaling and universality in economics: empirical results and theoretical interpretation," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 563-567.
    2. Barabási, Albert-László & Ravasz, Erzsébet & Vicsek, Tamás, 2001. "Deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 559-564.
    3. Frank Havemann & Michael Heinz & Roland Wagner‐Döbler, 2005. "Firm‐like behavior of journals? Scaling properties of their output and impact growth dynamics," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(1), pages 3-12, January.
    4. Amaral, L.A.N. & Gopikrishnan, P. & Plerou, V. & Stanley, H.E., 2001. "A model for the growth dynamics of economic organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 127-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beckstead, Desmond Gellatly, Guy, 2006. "Capacités d'innovation : l'emploi en sciences et en génie au Canada et aux États-Unis," L'économie canadienne en transition 2006011f, Statistics Canada, Division de l'analyse économique.
    2. Beckstead, Desmond Gellatly, Guy, 2006. "Innovation Capabilities: Science and Engineering Employment in Canada and the United States," The Canadian Economy in Transition 2006011e, Statistics Canada, Economic Analysis Division.
    3. Elvira Uyarra, 2011. "Regional innovation systems revisited: networks, institutions, policy and complexity," Openloc Working Papers 1113, Public policies and local development.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katz, J. Sylvan, 2006. "Indicators for complex innovation systems," Research Policy, Elsevier, vol. 35(7), pages 893-909, September.
    2. Campi, Mercedes & Dueñas, Marco, 2020. "Volatility and economic growth in the twentieth century," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 330-343.
    3. Thomas Brenner & Matthias Duschl, 2018. "Modeling Firm and Market Dynamics: A Flexible Model Reproducing Existing Stylized Facts on Firm Growth," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 745-772, October.
    4. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    5. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
    6. Gao, Yan & Liu, Gengyuan & Casazza, Marco & Hao, Yan & Zhang, Yan & Giannetti, Biagio F., 2018. "Economy-pollution nexus model of cities at river basin scale based on multi-agent simulation: A conceptual framework," Ecological Modelling, Elsevier, vol. 379(C), pages 22-38.
    7. Alex Coad, 2007. "Firm Growth: a Survey," Post-Print halshs-00155762, HAL.
    8. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    9. Blasi, Monica Francesca & Casorelli, Ida & Colosimo, Alfredo & Blasi, Francesco Simone & Bignami, Margherita & Giuliani, Alessandro, 2005. "A recursive network approach can identify constitutive regulatory circuits in gene expression data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 349-370.
    10. Zhang, Junhuan, 2018. "Influence of individual rationality on continuous double auction markets with networked traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 353-392.
    11. Hollingshad, Nicholas W. & Turalska, Malgorzata & Allegrini, Paolo & West, Bruce J. & Grigolini, Paolo, 2012. "A new measure of network efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1894-1899.
    12. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    14. Farkas, I & Derényi, I & Jeong, H & Néda, Z & Oltvai, Z.N & Ravasz, E & Schubert, A & Barabási, A.-L & Vicsek, T, 2002. "Networks in life: scaling properties and eigenvalue spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 25-34.
    15. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    16. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    17. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    18. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    19. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    20. Giulio Bottazzi & Le Li & Angelo Secchi, 2019. "Aggregate fluctuations and the distribution of firm growth rates," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(3), pages 635-656.

    More about this item

    Keywords

    complex system; scaling; power law; emergent properties; innovation; innovation system; indicators; scale-independent; model;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Socio-Economics of Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sru:ssewps:134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: University of Sussex Business School Communications Team (email available below). General contact details of provider: https://edirc.repec.org/data/spessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.