IDEAS home Printed from https://ideas.repec.org/p/snd/wpaper/86.html
   My bibliography  Save this paper

Adoption and Use of Improved Stoves and Biogas Plants in Rural India

Author

Listed:
  • Somnath Hazra
  • Jessica Lewis
  • Ipsita Das
  • Ashok Kumar Singha

Abstract

Household air pollution remains a dominant health risk, particularly in South Asia. Increasing international attention has focused on improved cookstoves (ICS) as a vehicle for reducing household air pollution, regional environmental and climate impacts. Biogas plants are a type of improved cooking technology. However, dissemination programs for ICS (including biogas) have met with mixed results, and biogas plants often suffer from operational and structural challenges. This analysis of ICS adoption adds to the limited literature informing cookstove dissemination programs. In a sample of households from Odisha, India, we find households with ICS have higher socioeconomic and educational status, while households with only a traditional stove spend more money on fuel and more time in hospitals treating respiratory disease. Hours of ICS use is significantly associated with less time spent collecting fuel and fewer days in the hospital for respiratory disease. We find that household receipt of higher subsidies for plant construction; livestock ownership and less time collecting wood are associated with ownership of biogas plants that remain functional. We also add to the scant field evidence of ICS impacts on fuel use and confirm that ownership of ICS including biogas stoves is associated with a significant decrease in fuelwood consumption.

Suggested Citation

  • Somnath Hazra & Jessica Lewis & Ipsita Das & Ashok Kumar Singha, "undated". "Adoption and Use of Improved Stoves and Biogas Plants in Rural India," Working papers 86, The South Asian Network for Development and Environmental Economics.
  • Handle: RePEc:snd:wpaper:86
    as

    Download full text from publisher

    File URL: http://www.sandeeonline.org/uploads/documents/publication/1037_PUB_Working_Paper_86_Somnath.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    2. Xiaohua, Wang & Jingfei, Li, 2005. "Influence of using household biogas digesters on household energy consumption in rural areas--a case study in Lianshui County in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 229-236, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chattopadhyay, Mriduchhanda & Arimura, Toshi H. & Katayama, Hajime & Sakudo, Mari & Yokoo, Hide-Fumi, 2021. "Subjective probabilistic expectations, household air pollution, and health: Evidence from cooking fuel use patterns in West Bengal, India," Resource and Energy Economics, Elsevier, vol. 66(C).
    2. Akram, Waqar & Lohano, Hemon Das & Inayatullah, Jan, 2017. "Adoption of Biogas: A Story from Rural Pakistan," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258206, Agricultural and Applied Economics Association.
    3. Zella Adili Y & Sererya Ogossy G, 2018. "Economics of U sing Improved Firewood Cooking Stove and Its Contribution on Climate Change Adaptation and Mitigation," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 14(4), pages 58-67, September.
    4. York, L. & Heffernan, C. & Rymer, C., 2016. "The role of subsidy in ensuring the sustainability of small-scale anaerobic digesters in Odisha, India," Renewable Energy, Elsevier, vol. 96(PB), pages 1111-1118.
    5. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Romadhoni Surya Putra, R. & Liu, Zhen & Lund, Mogens, 2017. "The impact of biogas technology adoption for farm households – Empirical evidence from mixed crop and livestock farming systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1371-1378.
    2. Akram, Waqar & Lohano, Hemon Das & Inayatullah, Jan, 2017. "Adoption of Biogas: A Story from Rural Pakistan," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258206, Agricultural and Applied Economics Association.
    3. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    4. Thomson Kalinda, 2022. "An Assessment of the Challenges affecting Smallholder Farmers in Adopting Biogas Technology in Zambia," Energy and Environment Research, Canadian Center of Science and Education, vol. 9(1), pages 1-48, June.
    5. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    6. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    7. Gautam, Rajeeb & Baral, Sumit & Herat, Sunil, 2009. "Biogas as a sustainable energy source in Nepal: Present status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 248-252, January.
    8. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    9. He, Pan & Veronesi, Marcella, 2017. "Personality traits and renewable energy technology adoption: A policy case study from China," Energy Policy, Elsevier, vol. 107(C), pages 472-479.
    10. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    11. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    13. Smith, Jo U. & Fischer, Anke & Hallett, Paul D. & Homans, Hilary Y. & Smith, Pete & Abdul-Salam, Yakubu & Emmerling, Hanna H. & Phimister, Euan, 2015. "Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 903-917.
    14. Sisi Que & Liang Wang & Kwame Awuah-Offei & Wei Yang & Hui Jiang, 2019. "Corporate Social Responsibility: Understanding the Mining Stakeholder with a Case Study," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    15. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    16. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    17. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    18. van Groenendaal, Willem & Gehua, Wang, 2010. "Microanalysis of the benefits of China's family-size bio-digesters," Energy, Elsevier, vol. 35(11), pages 4457-4466.
    19. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    20. Yasmin, Nazia & Grundmann, Philipp, 2020. "Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snd:wpaper:86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anuradhak The email address of this maintainer does not seem to be valid anymore. Please ask Anuradhak to update the entry or send us the correct address (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.