IDEAS home Printed from https://ideas.repec.org/p/snb/snbwpa/2016-04.html
   My bibliography  Save this paper

Forecasting with Large Unbalanced Datasets: The Mixed-Frequency Three-Pass Regression Filter

Author

Listed:
  • Dr. Christian Hepenstrick
  • Massimiliano Marcellino

Abstract

In this paper, we propose a modification of the three-pass regression filter (3PRF) to make it applicable to large mixed frequency datasets with ragged edges in a forecasting context. The resulting method, labeled MF-3PRF, is very simple but compares well to alternative mixed frequency factor estimation procedures in terms of theoretical properties, finite samle performance in Monte Carlo experiments, and empirical applications to GDP growth nowcasting and forecasting for the USA and a variety of other countries.

Suggested Citation

  • Dr. Christian Hepenstrick & Massimiliano Marcellino, 2016. "Forecasting with Large Unbalanced Datasets: The Mixed-Frequency Three-Pass Regression Filter," Working Papers 2016-04, Swiss National Bank.
  • Handle: RePEc:snb:snbwpa:2016-04
    as

    Download full text from publisher

    File URL: https://www.snb.ch/en/publications/research/working-papers/2016/working_paper_2016_04
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hager Ben Romdhane, 2021. "Nowcasting in Tunisia using large datasets and mixed frequency models," IHEID Working Papers 11-2021, Economics Section, The Graduate Institute of International Studies.
    2. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
    3. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
    4. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    5. Hagher Ben Rhomdhane & Brahim Mehdi Benlallouna, 2022. "Nowcasting real GDP in Tunisia using large datasets and mixed-frequency models," IHEID Working Papers 02-2022, Economics Section, The Graduate Institute of International Studies.
    6. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.

    More about this item

    Keywords

    Dynamic Factor Models; Mixed Frequency; GDP Nowcasting; Forecasting; Partial Least Squares;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snb:snbwpa:2016-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Enzo Rossi (email available below). General contact details of provider: https://edirc.repec.org/data/snbgvch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.