IDEAS home Printed from https://ideas.repec.org/p/smu/ecowpa/1510.html
   My bibliography  Save this paper

Consistent Variance of the Laplace Type Estimators: Application to DSGE Models

Author

Listed:
  • Anna Kormilitsina

    (Southern Methodist University)

  • Denis Nekipelov

    (University of Virginia)

Abstract

Laplace-type estimator has become popular in applied macroeconomics, in particular for estimation of DSGE models. It is often obtained as the mean and variance of parameter's quasi-posterior distribution, which is defined using a classical estimation objective. We demonstrate that the objective must be properly scalded; otherwise, arbirarily small confidence intervals can be obtained if calculated directly from the quasiposterior distribution. We estimate a standard DSGE model and find that scaling up the objective may be useful in estimation with problematic parameter identification. In this case, however, it is important to adjust the quasi-posterior variance to obtain valid confidence intervals.

Suggested Citation

  • Anna Kormilitsina & Denis Nekipelov, 2015. "Consistent Variance of the Laplace Type Estimators: Application to DSGE Models," Departmental Working Papers 1510, Southern Methodist University, Department of Economics.
  • Handle: RePEc:smu:ecowpa:1510
    as

    Download full text from publisher

    File URL: https://ftp1.economics.smu.edu/WorkingPapers/2015/KORMILITSINA/KORMILITSINA-2015-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Boragan Aruoba & Frank Schorfheide, 2011. "Sticky Prices versus Monetary Frictions: An Estimation of Policy Trade-Offs," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 60-90, January.
    2. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    3. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    4. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    5. Stephanie Schmitt-Grohe & Martin Uribe, 2011. "Business Cycles With A Common Trend in Neutral and Investment-Specific Productivity," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 122-135, January.
    6. Christiano, Lawrence J. & Trabandt, Mathias & Walentin, Karl, 2010. "DSGE Models for Monetary Policy Analysis," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 7, pages 285-367, Elsevier.
    7. DiCecio, Riccardo, 2009. "Sticky wages and sectoral labor comovement," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 538-553, March.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2011. "Strategic Interaction among Heterogeneous Price-Setters in an Estimated DSGE Model," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 920-940, August.
    9. Anna Kormilitsina, 2011. "Oil Price Shocks and the Optimality of Monetary Policy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 199-223, January.
    10. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    11. van Binsbergen, Jules H. & Fernández-Villaverde, Jesús & Koijen, Ralph S.J. & Rubio-Ramírez, Juan, 2012. "The term structure of interest rates in a DSGE model with recursive preferences," Journal of Monetary Economics, Elsevier, vol. 59(7), pages 634-648.
    12. Xiaohong Chen & Oliver Linton & Ingred van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers 02/02, Institute for Fiscal Studies.
    13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    14. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atsushi Inoue & Mototsugu Shintani, 2018. "Quasi‐Bayesian model selection," Quantitative Economics, Econometric Society, vol. 9(3), pages 1265-1297, November.
    2. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Kormilitsina & Denis Nekipelov, 2016. "Consistent Variance Of The Laplace‐Type Estimators: Application To Dsge Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 603-622, May.
    2. Polbin, Andrey & Sinelnikov-Murylev, Sergey, 2024. "Developing and impulse response matching estimation of the DSGE model for the Russian economy," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 73, pages 5-34.
    3. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    4. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
    5. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    7. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    8. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    9. Theodoridis, Konstantinos, 2011. "An efficient minimum distance estimator for DSGE models," Bank of England working papers 439, Bank of England.
    10. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    11. Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
    12. Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
    13. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    14. Salim Bouzebda & Issam Elhattab & Anouar Abdeldjaoued Ferfache, 2022. "General M-Estimator Processes and their m out of n Bootstrap with Functional Nuisance Parameters," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2961-3005, December.
    15. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    16. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    17. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    18. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    19. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    20. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.

    More about this item

    Keywords

    Laplace-type estimator; GMM; DSGE model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:smu:ecowpa:1510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ömer Özak (email available below). General contact details of provider: http://www.smu.edu/economics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.