IDEAS home Printed from https://ideas.repec.org/p/sin/wpaper/15-a003.html
   My bibliography  Save this paper

Estimation and Inference for Distribution Functions and Quantile Functions in Endogenous Treatment Effect Models

Author

Abstract

We propose a new monotonizing method to obtain estimators for the distribution functions of potential outcomes among the group of compliers in an endogenous treatment effect model that are monotonically increasing and bounded between zero and one. Corresponding quantile function estimators are obtain by applying the inverse map to the CDF estimators. We show that both these estimators converge weakly to zero mean Gaussian processes. A simulation method is proposed to approximate the limiting processes for uniform inference. A Monte Carlo simulation and an application addressing the effect of fertility on family income illustrate the usefulness of the results. JEL Classification: C21, C26

Suggested Citation

  • Yu-Chin Hsu & Robert P. Lieli & Tsung-Chih Lai, 2015. "Estimation and Inference for Distribution Functions and Quantile Functions in Endogenous Treatment Effect Models," IEAS Working Paper : academic research 15-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  • Handle: RePEc:sin:wpaper:15-a003
    as

    Download full text from publisher

    File URL: https://www.econ.sinica.edu.tw/~econ/pdfPaper/15-A003.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    2. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    3. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    4. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.

    More about this item

    Keywords

    distribution function; quantile function; treatment effects; instrumental variables; inverse probability weighted estimator;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:15-a003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HsiaoyunLiu (email available below). General contact details of provider: https://edirc.repec.org/data/sinictw.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.