IDEAS home Printed from https://ideas.repec.org/p/shf/wpaper/2006007.html
   My bibliography  Save this paper

Neural networks and the evolution of firms and industries: An application to UK SIC34 and SIC72

Author

Listed:
  • Michael Dietrich

    (Department of Economics, The University of Sheffield)

Abstract

This paper considers whether neural networks might be used to analyse firm activity and the evolution of industries. The key findings of the simulation results used are summarised as follows. While efficiency seeking behaviour has growth advantages, compared to unchanged firms, these are small compared to the growth advantages that are displayed with firms that are able to exploit input use variability. In addition the two sectors analysed here (UK SIC34 and SIC72) show different profit implications of these growth advantages. In SIC34 an increase in firm growth caused by strategic flexibility coincides with an increase in profitability, whereas in SIC72 the increase in firm growth coincides with a profitability reduction. This difference is explained in terms of the differing market structures in the two sectors along with the differing effects of market shocks. Finally the market structure effects of differing firm types have been analysed. It is shown that factor flexibility generates relative growth advantages that benefit smaller firms. But strategic flexibility generates relative growth effects that benefit larger firms.

Suggested Citation

  • Michael Dietrich, 2006. "Neural networks and the evolution of firms and industries: An application to UK SIC34 and SIC72," Working Papers 2006007, The University of Sheffield, Department of Economics, revised May 2006.
  • Handle: RePEc:shf:wpaper:2006007
    as

    Download full text from publisher

    File URL: http://www.shef.ac.uk/economics/research/serps/articles/2006_07.html
    File Function: First version, 1996
    Download Restriction: no

    File URL: http://www.shef.ac.uk/economics/research/serps/articles/2006_07.html
    File Function: Revised version, 2006
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    2. Nicholas Wilson & Kwee Chong & Michael Peel & A. N. Kolmogorov, 1995. "Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 2(1), pages 31-50.
    3. Christos Papadas & W. George Hutchinson, 2002. "Neural network forecasts of input-output technology," Applied Economics, Taylor & Francis Journals, vol. 34(13), pages 1607-1615.
    4. Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
    5. Teo Jasic & Douglas Wood, 2004. "The profitability of daily stock market indices trades based on neural network predictions: case study for the S&P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 285-297.
    6. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    7. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    8. Michael Dietrich, 2005. "Using simple neural networks to analyse firm activity," Working Papers 2005014, The University of Sheffield, Department of Economics, revised Jul 2005.
    9. Daniel Santin & Francisco Delgado & Aurelia Valino, 2004. "The measurement of technical efficiency: a neural network approach," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 627-635.
    10. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Dietrich, 2005. "Using simple neural networks to analyse firm activity," Working Papers 2005014, The University of Sheffield, Department of Economics, revised Jul 2005.
    2. Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
    3. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    4. repec:lan:wpaper:4408 is not listed on IDEAS
    5. repec:lan:wpaper:4839 is not listed on IDEAS
    6. repec:lan:wpaper:4407 is not listed on IDEAS
    7. Adam Fadlalla & Chien-Hua Lin, 2001. "An Analysis of the Applications of Neural Networks in Finance," Interfaces, INFORMS, vol. 31(4), pages 112-122, August.
    8. repec:lan:wpaper:4535 is not listed on IDEAS
    9. G Johnes, 2003. "Curriculum," Working Papers 541985, Lancaster University Management School, Economics Department.
    10. Panayotis G. Michaelides & Efthymios G. Tsionas & Angelos T. Vouldis & Konstantinos N. Konstantakis & Panagiotis Patrinos, 2018. "A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 637-675, March.
    11. Yaya, OlaOluwa S & Ogbonna, Ephraim A & Furuoka, Fumitaka & Gil-Alana, Luis A., 2019. "A new unit root analysis for testing hysteresis in unemployment," MPRA Paper 96621, University Library of Munich, Germany.
    12. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    13. Daniel Santin, 2008. "On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques," Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 597-600.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," AQR Working Papers 201410, University of Barcelona, Regional Quantitative Analysis Group, revised May 2014.
    15. Geraint Johnes, 2005. "‘Don’t Know Much About History…’: Revisiting the Impact of Curriculum on Subsequent Labour Market Outcomes," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 249-271, July.
    16. Bi-Huei Tsai, 2017. "Predicting the competitive relationships of industrial production between Taiwan and China using Lotka–Volterra model," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2428-2442, May.
    17. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    18. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    19. Fabio Panetta & Fabiano Schivardi & Matthew Shum, 2009. "Do Mergers Improve Information? Evidence from the Loan Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(4), pages 673-709, June.
    20. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    21. Hyytinen, Ari, 2003. "Information production and lending market competition," Journal of Economics and Business, Elsevier, vol. 55(3), pages 233-253.
    22. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    23. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    24. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:shf:wpaper:2006007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mike Crabtree (email available below). General contact details of provider: https://edirc.repec.org/data/desheuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.