IDEAS home Printed from https://ideas.repec.org/p/sek/iefpro/4507452.html
   My bibliography  Save this paper

A Stochastic Factor Model for Risk Management of Commodity Derivatives

Author

Listed:
  • Zi-Yi Guo

    (Wells Fargo Bank, N.A.)

Abstract

In the last two years, the world crude oil prices have dropped dramatically, and consequently the oil market has become very volatile and risky. Since energy markets play very important roles in the international economy and have led several global economic crises, risk management of energy products prices becomes very important for both academicians and market participants. We apply Schwartz and Smith?s model (2000) to calculate risk measures of Brent oil futures contracts and light sweet crude oil (WTI) futures contracts. The model includes a long-term factor and a short-term factor. We show that the two factors explain the Samuelson effect well and the model present well goodness of fit. Our backtesting results demonstrate that the models provide satisfactory risk measures for listed crude oil futures contracts. A simple estimation method possessing quick convergence is developed.

Suggested Citation

  • Zi-Yi Guo, 2017. "A Stochastic Factor Model for Risk Management of Commodity Derivatives," Proceedings of Economics and Finance Conferences 4507452, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iefpro:4507452
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/7th-economics-finance-conference-tel-aviv-israel/table-of-content/detail?cid=45&iid=004&rid=7452
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    2. Costello, Alexandra & Asem, Ebenezer & Gardner, Eldon, 2008. "Comparison of historically simulated VaR: Evidence from oil prices," Energy Economics, Elsevier, vol. 30(5), pages 2154-2166, September.
    3. Gonzalo Cortazar & Lorenzo Naranjo, 2006. "An N‐factor Gaussian model of oil futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 243-268, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Kruse & Thomas Tischer & Timo Wittig, 2017. "A New Empirical Investigation Of The Platinum Spot Returns," Journal of Smart Economic Growth, , vol. 2(2), pages 141-148, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zi-Yi, 2017. "Models with Short-Term Variations and Long-Term Dynamics in Risk Management of Commodity Derivatives," EconStor Preprints 167619, ZBW - Leibniz Information Centre for Economics.
    2. Zi‐Yi Guo, 2020. "Stochastic multifactor models in risk management of energy futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1918-1934, December.
    3. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    4. Meade, Nigel, 2010. "Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion," Energy Economics, Elsevier, vol. 32(6), pages 1485-1498, November.
    5. Chang, Ting-Huan & Su, Hsin-Mei & Chiu, Chien-Liang, 2011. "Value-at-risk estimation with the optimal dynamic biofuel portfolio," Energy Economics, Elsevier, vol. 33(2), pages 264-272, March.
    6. Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
    7. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    8. Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
    9. Gao, Xiangyun & An, Haizhong & Fang, Wei & Li, Huajiao & Sun, Xiaoqi, 2014. "The transmission of fluctuant patterns of the forex burden based on international crude oil prices," Energy, Elsevier, vol. 73(C), pages 380-386.
    10. He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
    11. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
    12. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    13. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
    14. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    15. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    16. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
    17. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    18. Dilip Kumar & S. Maheswaran, 2013. "Return, Volatility and Risk Spillover from Oil Prices and the US Dollar Exchange Rate to the Indian Industrial Sectors," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 61-91, February.
    19. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    20. Christos Agiakloglou & Charalampos Agiropoulos, 2011. "The sensitivity of Value-at-Risk estimates using Monte Carlo approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 61(1-2), pages 7-12, January -.

    More about this item

    Keywords

    Factor model; Samuelson effect; value-at-risk; least square estimation.;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iefpro:4507452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.