IDEAS home Printed from https://ideas.repec.org/p/sek/iefpro/14716504.html
   My bibliography  Save this paper

The Influence Of The Field Of Business On The Development Of Productivity In Selected Companies Of The Czech Chemical Industry

Author

Listed:
  • Olga Kutnohorská

    (University of Chemistry and Technology, Prague)

  • Dana Strachotová

    (University of Chemistry and Technology, Prague)

  • Marek Botek

    (University of Chemistry and Technology, Prague)

  • Stanislava Grosová

    (University of Chemistry and Technology, Prague)

Abstract

This study analyses the productivity of selected chemical industry companies in the Czech Republic through Data Envelopment Analysis (DEA). The selection of companies for analysis was based on the amount of turnover and also according to the field of business. The enterprises were grouped into 4 groups. The first group A represents qualified chemistry, followed by group B (commodity inorganic and organic chemistry), group C (processing of plastics or rubbers) and group D (distribution of raw materials). The Malmquist productivity index (MPI) was used to analyse changes in the productivity of companies, and the statistical significance of these indices was tested using. This procedure helped identify the influence of various factors on the efficiency and productivity of companies, including the influence of the area of business. The study showed other possibilities of using this procedure. E.g., in the case of inclusion of environmental costs or investments in the field of the environment.

Suggested Citation

  • Olga Kutnohorská & Dana Strachotová & Marek Botek & Stanislava Grosová, 0000. "The Influence Of The Field Of Business On The Development Of Productivity In Selected Companies Of The Czech Chemical Industry," Proceedings of Economics and Finance Conferences 14716504, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iefpro:14716504
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/international-conference-on-economics-finance-business-lisbon/table-of-content/detail?cid=147&iid=006&rid=16504
    File Function: First version, 0000
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dariush Akbarian, 2020. "Overall profit Malmquist productivity index under data uncertainty," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.
    2. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    3. A Zanella & A S Camanho & T G Dias, 2013. "Benchmarking countries’ environmental performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 426-438, March.
    4. Barnabé Walheer, 2022. "Global Malmquist and cost Malmquist indexes for group comparison," Journal of Productivity Analysis, Springer, vol. 58(1), pages 75-93, August.
    5. Kuosmanen, Timo, 2006. "Stochastic Nonparametric Envelopment of Data: Combining Virtues of SFA and DEA in a Unified Framework," Discussion Papers 11864, MTT Agrifood Research Finland.
    6. Odeck, James & Schøyen, Halvor, 2020. "Productivity and convergence in Norwegian container seaports: An SFA-based Malmquist productivity index approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 222-239.
    7. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Botek & Olga Kutnohorská & Dana Strachotová & Stanislava Grosová, 0000. "Productivity Development Of Companies Of The Czech Chemical Industry," Proceedings of International Academic Conferences 14616446, International Institute of Social and Economic Sciences.
    2. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    3. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    4. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).
    5. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    6. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    7. Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
    8. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    9. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
    10. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    11. Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP092020, School of Economics, University of Queensland, Australia.
    12. Kuosmanen, Timo & Kuosmanen, Natalia, 2009. "How not to measure sustainable value (and how one might)," Ecological Economics, Elsevier, vol. 69(2), pages 235-243, December.
    13. Xian, Yujiao & Yu, Dan & Wang, Ke & Yu, Jian & Huang, Zhimin, 2022. "Capturing the least costly measure of CO2 emission abatement: Evidence from the iron and steel industry in China," Energy Economics, Elsevier, vol. 106(C).
    14. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
    15. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    16. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.
    17. Tsionas, Mike G., 2023. "Joint production in stochastic non-parametric envelopment of data with firm-specific directions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1336-1347.
    18. Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.
    19. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    20. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).

    More about this item

    Keywords

    Field of business of chemical industry company; Data envelopment analysis; Malmquist productivity index; Financial statements;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • D20 - Microeconomics - - Production and Organizations - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iefpro:14716504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.