IDEAS home Printed from https://ideas.repec.org/p/sef/csefwp/593.html
   My bibliography  Save this paper

Best response algorithms in ratio-bounded games: convergence of affine relaxations to Nash equilibria

Author

Listed:

Abstract

In two-player non-cooperative games whose strategy sets are Hilbert spaces, in order to approach Nash equilibria we are interested in the affine relaxations of the best response algorithm (where a player's strategy is exactly a best response to the strategy of the other player that comes from the previous step, sometimes called as "fictitious play"). For this purpose we define a class of games, called ratio-bounded games, that relies on explicit assumptions on the data and that contains large classes of games already known in literature, both in finite and in infinite dimensional setting: extended quadratic games including potential and antipotential games, non-quadratic games with a bilinear interaction, and linear state differential games. We provide a classification of the ratio-bounded games in four subclasses such that, for each of them, the following issues are examined: the existence and uniqueness of Nash equilibria, the convergence of affine relaxations of the best response algorithm and the estimation of related errors. In particular, the results on convergence of convex relaxations of the best response algorithm include those obtained for zero-sum games in Morgan [Int. J. Comput. Math., 4 (1974), pp. 143-175], and the results on convergence of affine non-convex relaxations include those obtained for non-zero-sum games in Caruso, Ceparano, Morgan [SIAM J. Optim., 30 (2020), pp. 1638-1663].

Suggested Citation

  • Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2020. "Best response algorithms in ratio-bounded games: convergence of affine relaxations to Nash equilibria," CSEF Working Papers 593, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:593
    as

    Download full text from publisher

    File URL: http://www.csef.it/WP/wp593.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Branzei, Rodica & Mallozzi, Lina & Tijs, Stef, 2003. "Supermodular games and potential games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 39-49, February.
    3. Alain Haurie & Jacek B Krawczyk & Georges Zaccour, 2012. "Games and Dynamic Games," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8442, February.
    4. Harris, Christopher, 1998. "On the Rate of Convergence of Continuous-Time Fictitious Play," Games and Economic Behavior, Elsevier, vol. 22(2), pages 238-259, February.
    5. Brânzei, R. & Mallozzi, L. & Tijs, S.H., 2003. "Supermodular games and potential games," Other publications TiSEM 87c16860-0596-4448-808d-c, Tilburg University, School of Economics and Management.
    6. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    7. Balkenborg, Dieter & Hofbauer, Josef & Kuzmics, Christoph, 2016. "Refined best reply correspondence and dynamics," Center for Mathematical Economics Working Papers 451, Center for Mathematical Economics, Bielefeld University.
    8. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    9. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2012. "Perturbations of Set-Valued Dynamical Systems, with Applications to Game Theory," Dynamic Games and Applications, Springer, vol. 2(2), pages 195-205, June.
    10. Berger, Ulrich, 2005. "Fictitious play in 2 x n games," Journal of Economic Theory, Elsevier, vol. 120(2), pages 139-154, February.
    11. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    12. Basar, Tamer, 1987. "Relaxation techniques and asynchronous algorithms for on-line computation of non-cooperative equilibria," Journal of Economic Dynamics and Control, Elsevier, vol. 11(4), pages 531-549, December.
    13. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, September.
    14. Lina Mallozzi & Jacqueline Morgan, 2006. "On approximate mixed Nash equilibria and average marginal functions for two-stage three-players games," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 97-107, Springer.
    15. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2021. "A Local Variation Method for Bilevel Nash Equilibrium Problems," CSEF Working Papers 620, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Berger, 2004. "Two More Classes of Games with the Fictitious Play Property," Game Theory and Information 0408003, University Library of Munich, Germany.
    2. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    3. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    4. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    5. Swenson, Brian & Murray, Ryan & Kar, Soummya, 2020. "Regular potential games," Games and Economic Behavior, Elsevier, vol. 124(C), pages 432-453.
    6. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    7. Berger, Ulrich, 2007. "Two more classes of games with the continuous-time fictitious play property," Games and Economic Behavior, Elsevier, vol. 60(2), pages 247-261, August.
    8. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    9. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    10. Berger, Ulrich & Hofbauer, Josef, 2006. "Irrational behavior in the Brown-von Neumann-Nash dynamics," Games and Economic Behavior, Elsevier, vol. 56(1), pages 1-6, July.
    11. Ulrich Berger, 2004. "Some Notes on Learning in Games with Strategic Complementarities," Game Theory and Information 0409001, University Library of Munich, Germany.
    12. In, Younghwan, 2014. "Fictitious play property of the Nash demand game," Economics Letters, Elsevier, vol. 122(3), pages 408-412.
    13. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    14. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    15. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    16. Leslie, David S. & Perkins, Steven & Xu, Zibo, 2020. "Best-response dynamics in zero-sum stochastic games," Journal of Economic Theory, Elsevier, vol. 189(C).
    17. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2003. "Stochastic Approximations and Differential Inclusions," Working Papers hal-00242990, HAL.
    18. Berger, Ulrich, 2016. "Learning to trust, learning to be trustworthy," Department of Economics Working Paper Series 212, WU Vienna University of Economics and Business.
    19. Berger, Ulrich, 2008. "Learning in games with strategic complementarities revisited," Journal of Economic Theory, Elsevier, vol. 143(1), pages 292-301, November.
    20. Sparrow, Colin & van Strien, Sebastian & Harris, Christopher, 2008. "Fictitious play in 3x3 games: The transition between periodic and chaotic behaviour," Games and Economic Behavior, Elsevier, vol. 63(1), pages 259-291, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: https://edirc.repec.org/data/cssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.