IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/254.html
   My bibliography  Save this paper

Multi-Step Perturbation Solution of Nonlinear Rational Expectations Models

Author

Listed:
  • Baoline Chen
  • Peter A. Zadrozny

Abstract

This paper develops and illustrates the multi-step generalization of the standard single-step perturbation (SSP) method or MSP. In SSP, we can think of evaluating at x the computed approximate solution based on x0, as moving from x0 to x in "one big step" along the straight-line vector x-x0. By contrast, in MSP we move from x0 to x along any chosen path, continuous, curved-line or connected-straight-line, in h steps of equal length 1/h. If at each step we apply SSP, Taylor-series theory says that the approximation error per step is 0(e) = h^(-k-1), so that the total approximation error in moving from x0 to x in h steps is 0(e) = h^(-k). Thus, MSP has two major advantages over SSP. First, both SSP and MSP accuracy declines as the approximation point, x, moves from the initial point, x0, although only in MSP can the decline be countered by increasing h. Increasing k is much more costly than increasing h, because increasing k requires new derivations of derivatives, more computer programming, more computer storage, and more computer run time. By contrast, increasing h generally requires only more computer run time and often only slightly more. Second, in SSP the initial point is usually a nonstochastic steady state but can sometimes also be set up in function space as the known exact solution of a close but simpler model. This "closeness" of a related, simpler, and known solution can be exploited much more explicitly by MSP, when moving from x0 to x. In MSP, the state space could include parameters, so that the initial point, x0, would represent the simpler model with the known solution, and the final point, x, would continue to represent the model of interest. Then, as we would move from the initial x0 to the final x in h steps, the state variables and parameters would move together from their initial to final values and the model being solved would vary continuously from the simple model to the model of interest. Both advantages of MSP facilitate repeatedly, accurately, and quickly solving a NLRE model in an econometric analysis, over a range of data values, which could differ enough from nonstochastic steady states of the model of interest to render computed SSP solutions, for a given k, inadequately accurate. In the present paper, we extend the derivation of SSP to MSP for k = 4. As we did before, we use a mixture of gradient and differential-form differentiations to derive the MSP computational equations in conventional linear-algebraic form and illustrate them with a version of the stochastic optimal one-sector growth model.

Suggested Citation

  • Baoline Chen & Peter A. Zadrozny, 2005. "Multi-Step Perturbation Solution of Nonlinear Rational Expectations Models," Computing in Economics and Finance 2005 254, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:254
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.25973.1107147107.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baoline Chen & Peter A. Zadrozny, 2003. "Higher-Moments in Perturbation Solution of the Linear-Quadratic Exponential Gaussian Optimal Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 21(1_2), pages 45-64, February.
    2. Peter A. Zadrozny & Baoline Chen, 1999. "Perturbation Solution of Nonlinear Rational Expectations Models," Computing in Economics and Finance 1999 334, Society for Computational Economics.
    3. Zadrozny, Peter A., 1998. "An eigenvalue method of undetermined coefficients for solving linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1353-1373, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
    2. Richard Mash, 2003. "A Note on Simple MSV Solution Methods for Rational Expectations Models of Monetary Policy," Economics Series Working Papers 173, University of Oxford, Department of Economics.
    3. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    4. Zadrozny, Peter A., 2022. "Linear identification of linear rational-expectations models by exogenous variables reconciles Lucas and Sims," CFS Working Paper Series 682, Center for Financial Studies (CFS).
    5. Gary Anderson, 2008. "Solving Linear Rational Expectations Models: A Horse Race," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 95-113, March.
    6. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    7. Binder, Michael & Pesaran, Hashem, 2000. "Solution of finite-horizon multivariate linear rational expectations models and sparse linear systems," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 325-346, March.
    8. Balvers, Ronald J. & Mitchell, Douglas W., 2007. "Reducing the dimensionality of linear quadratic control problems," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 141-159, January.
    9. Nason, James M. & Rogers, John H., 2006. "The present-value model of the current account has been rejected: Round up the usual suspects," Journal of International Economics, Elsevier, vol. 68(1), pages 159-187, January.
    10. Lan, Hong & Meyer-Gohde, Alexander, 2011. "Solving DSGE models with a nonlinear moving average," SFB 649 Discussion Papers 2011-087, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Baoline Chen & Peter A. Zadrozny, 2003. "Higher-Moments in Perturbation Solution of the Linear-Quadratic Exponential Gaussian Optimal Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 21(1_2), pages 45-64, February.
    12. Chen, Baoline & Zadrozny, Peter A., 2009. "Multi-step perturbation solution of nonlinear differentiable equations applied to an econometric analysis of productivity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2061-2074, April.
    13. Anderson, Evan W. & Hansen, Lars Peter & Sargent, Thomas J., 2012. "Small noise methods for risk-sensitive/robust economies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 468-500.
    14. Tan, Fei & Walker, Todd B., 2015. "Solving generalized multivariate linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 95-111.
    15. James M. Nason & Gregor W. Smith, 2008. "Identifying the new Keynesian Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 525-551.
    16. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    17. Peter Zadrozny, 1997. "An Econometric Analysis of Polish Inflation Dynamics with Learning about Rational Expectations," Economic Change and Restructuring, Springer, vol. 30(2), pages 221-238, May.
    18. Hernandez, Kolver, 2013. "A system reduction method to efficiently solve DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 571-576.
    19. Onatski, Alexei, 2006. "Winding number criterion for existence and uniqueness of equilibrium in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 323-345, February.
    20. George A. Slotsve & James M. Nason, 2003. "Along the New Keynesian Phillips Curve with Nominal and Real Rigidities," Computing in Economics and Finance 2003 270, Society for Computational Economics.

    More about this item

    Keywords

    numerical solution of dynamic stochastic equilibrium models;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.