IDEAS home Printed from https://ideas.repec.org/p/sce/scecf4/241.html
   My bibliography  Save this paper

Heterogeneous Agents Past and Forward Time Horizons in Setting Up a Computational Model

Author

Listed:
  • Serge Hayward

Abstract

Price forecasting and trading strategies modelling are examined with major international stock indexes under different time horizons. Results demonstrate that an accurate prediction is equally important as a stable saving rate for long-term survivability. The best economic performances are achieved for a one-year investment horizon with longer training not necessarily leading to improved accuracy. Thin markets" dominance by a particular traders" type (e.g. short memory agents) results in a higher likelihood to learn with computational intelligence tools profitable strategies, used by dominant traders. An improvement in profitability is achieved for models optimized with genetic algorithm and fine-tuning of training/validation/testing distribution

Suggested Citation

  • Serge Hayward, 2004. "Heterogeneous Agents Past and Forward Time Horizons in Setting Up a Computational Model," Computing in Economics and Finance 2004 241, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:241
    as

    Download full text from publisher

    File URL: http://repec.org/sce2004/up.5449.1077915422.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 285-300, September.
    2. Blume, Lawrence & Easley, David, 1992. "Evolution and market behavior," Journal of Economic Theory, Elsevier, vol. 58(1), pages 9-40, October.
    3. Ya-Chi Huang & Shu-Heng Chen, 2003. "Simulating the Evolution of Portfolio Behavior in a Multiple-Asset Agent-Based Artificial Stock Market," Computing in Economics and Finance 2003 62, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serge Hayward, 2005. "The Role of Heterogeneous Agents’ Past and Forward Time Horizons in Formulating Computational Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 25-40, February.
    2. Saki Bigio & Eduardo Zilberman, 2020. "Speculation-Driven Business Cycles," Working Papers Central Bank of Chile 865, Central Bank of Chile.
    3. Gehrig, Thomas & Güth, Werner & Leví0nský, René & Popova, Vera, 2010. "On the evolution of professional consulting," Journal of Economic Behavior & Organization, Elsevier, vol. 76(1), pages 113-126, October.
    4. George Deltas & Richard Engelbrecht-Wiggans, 2005. "Naive Bidding," Management Science, INFORMS, vol. 51(3), pages 328-338, March.
    5. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    6. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    7. Amir, Rabah & Evstigneev, Igor V. & Hens, Thorsten & Schenk-Hoppe, Klaus Reiner, 2005. "Market selection and survival of investment strategies," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 105-122, February.
    8. Antonio Cabrales & Olivier Gossner & Roberto Serrano, 2012. "The Appeal of Information Transactions," Working Papers 2012-13, Brown University, Department of Economics.
    9. Witte, Björn-Christopher, 2012. "Fund managers - Why the best might be the worst: On the evolutionary vigor of risk-seeking behavior," Economics Discussion Papers 2012-20, Kiel Institute for the World Economy (IfW Kiel).
    10. Chueh-Yung Tsao & Ya-Chi Huang, 2018. "Revisiting the issue of survivability and market efficiency with the Santa Fe Artificial Stock Market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 537-560, October.
    11. Guidolin, Massimo & Ricci, Andrea, 2020. "Arbitrage risk and a sentiment as causes of persistent mispricing: The European evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 1-11.
    12. repec:iad:wpaper:0620 is not listed on IDEAS
    13. Giulio Bottazzi & Daniele Giachini, 2020. "Selection in incomplete markets and the CAPM portfolio rule," LEM Papers Series 2020/29, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Pierre Giot & Mikael Petitjean, 2011. "On the statistical and economic performance of stock return predictive regression models: an international perspective," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 175-193.
    15. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
    16. Mikhail Zhitlukhin, 2018. "Survival investment strategies in a continuous-time market model with competition," Papers 1811.12491, arXiv.org, revised Sep 2019.
    17. Cherkashin, Dmitriy & Farmer, J. Doyne & Lloyd, Seth, 2009. "The reality game," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1091-1105, May.
      • Dmitriy Cherkashin & J. Doyne Farmer & Seth Lloyd, 2009. "The Reality Game," Papers 0902.0100, arXiv.org, revised Feb 2009.
    18. Coqueret, Guillaume & Tavin, Bertrand, 2019. "Procedural rationality, asset heterogeneity and market selection," Journal of Mathematical Economics, Elsevier, vol. 82(C), pages 125-149.
    19. Henry J. Aaron, 1994. "Distinguished Lecture on Economics in Government: Public Policy, Values, and Consciousness," Journal of Economic Perspectives, American Economic Association, vol. 8(2), pages 3-21, Spring.
    20. H. Allen Orr, 2018. "Evolution, finance, and the population genetics of relative wealth," Journal of Bioeconomics, Springer, vol. 20(1), pages 29-48, April.
    21. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.

    More about this item

    Keywords

    Artificial Neural Network; Genetic Algorithm; Heterogeneous Agents; Time Horizons; Memory Length; Economic Profitability; Statistical Accuracy; Financial Markets; Stock Trading Strategies;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.