IDEAS home Printed from https://ideas.repec.org/p/sce/scecf4/117.html
   My bibliography  Save this paper

The short-run dynamics of optimal growth models with delays

Author

Listed:
  • Luis A. Puch
  • Fabrice Collard
  • Omar Licandro

Abstract

Differential equations with advanced and delayed time arguments may arise in the optimality conditions of simple growth models with delays. Models with investment gestation lags (time-to-build), consumption gestation lags (habit formation) or learning by using lie in this category. In this paper, we propose a shooting method to deal with leads and lags in the Euler system associated to dynamic general equilibrium models in continuous time. We introduce the discussion describing the dynamics that emerge under various assumptions on learning by using and gestation lags. Then, we implement the numerical method we propose to solve for the short run dynamics of a neoclassical growth model with a simple time--to--build lag.

Suggested Citation

  • Luis A. Puch & Fabrice Collard & Omar Licandro, 2004. "The short-run dynamics of optimal growth models with delays," Computing in Economics and Finance 2004 117, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:117
    as

    Download full text from publisher

    File URL: http://www.ucm.es/info/ecocuan/lpg/lpg-ttob1.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Asea, Patrick K. & Zak, Paul J., 1999. "Time-to-build and cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 23(8), pages 1155-1175, August.
    2. Boucekkine, Raouf & Licandro, Omar & Paul, Christopher, 1997. "Differential-difference equations in economics: On the numerical solution of vintage capital growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 347-362.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    4. Raouf Boucekkine & David de la Croix & Omar Licandro, 2006. "Vintage Capital," Economics Working Papers ECO2006/8, European University Institute.
    5. Jody Overland & Christopher D. Carroll & David N. Weil, 2000. "Saving and Growth with Habit Formation," American Economic Review, American Economic Association, vol. 90(3), pages 341-355, June.
    6. Boucekkine, Raouf & Germain, Marc & Licandro, Omar, 1997. "Replacement Echoes in the Vintage Capital Growth Model," Journal of Economic Theory, Elsevier, vol. 74(2), pages 333-348, June.
    7. Boucekkine, Raouf & Licandro, Omar & Puch, Luis A. & del Rio, Fernando, 2005. "Vintage capital and the dynamics of the AK model," Journal of Economic Theory, Elsevier, vol. 120(1), pages 39-72, January.
    8. Benhabib, Jess & Rustichini, Aldo, 1991. "Vintage capital, investment, and growth," Journal of Economic Theory, Elsevier, vol. 55(2), pages 323-339, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich Brandt-Pollmann & Ralph Winkler & Sebastian Sager & Ulf Moslener & Johannes Schlöder, 2008. "Numerical Solution of Optimal Control Problems with Constant Control Delays," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 181-206, March.
    2. d’Albis, Hippolyte & Augeraud-Véron, Emmanuelle & Hupkes, Hermen Jan, 2014. "Stability and determinacy conditions for mixed-type functional differential equations," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 119-129.
    3. Raouf Boucekkine & Giorgio Fabbri & Patrick-Antoine Pintus, 2011. "On the optimal control of a linear neutral differential equation arising in economics," Working Papers halshs-00576770, HAL.
    4. Bambi, Mauro & Gozzi, Fausto & Licandro, Omar, 2014. "Endogenous growth and wave-like business fluctuations," Journal of Economic Theory, Elsevier, vol. 154(C), pages 68-111.
    5. Martina BOBALOVA & Veronika NOVOTNA, 2021. "Modeling Of Time Delayed Processes In Business Economics," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 15(1), pages 79-89, November.
    6. Simon Sosvilla-Rivero & Pedro Rodriguez, 2010. "Linkages in international stock markets: evidence from a classification procedure," Applied Economics, Taylor & Francis Journals, vol. 42(16), pages 2081-2089.
    7. M. Bambi & G. Fabbri & F. Gozzi, 2012. "Optimal policy and consumption smoothing effects in the time-to-build AK model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 635-669, August.
    8. Lin, Hwan C. & Shampine, L.F., 2014. "Finite-length Patents and Functional Differential Equations in a Non-scale R&D-based Growth Model," MPRA Paper 61603, University Library of Munich, Germany.
    9. Mauro Bambi, 2006. "Endogenous growth and time to build: the AK case," Computing in Economics and Finance 2006 77, Society for Computational Economics.
    10. Raouf Boucekkine & David Croix & Omar Licandro, 2004. "MODELLING VINTAGE STRUCTURES WITH DDEs: PRINCIPLES AND APPLICATIONS," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 151-179.
    11. BOUCEKKINE, Raouf & FABBRI, Giorgio & PINTUS, Patrick, 2012. "On the optimal control of a linear neutral differential equation arising in economics," LIDAM Reprints CORE 2449, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    13. Omar Licandro & Luis A. Puch & Jesús Ruiz, 2018. "Continuous vs Discrete Time Modelling in Growth and Business Cycle Theory," Documentos de Trabajo del ICAE 2018-28, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Hwan C. Lin & L. F. Shampine, 2018. "R&D-based Calibrated Growth Models with Finite-Length Patents: A Novel Relaxation Algorithm for Solving an Autonomous FDE System of Mixed Type," Computational Economics, Springer;Society for Computational Economics, vol. 51(1), pages 123-158, January.
    15. Hwan C. Lin, 2018. "Computing Transitional Cycles for a Deterministic Time-to-Build Growth Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 677-696, March.
    16. José A. Herce, "undated". "Could this ever happen in Spain? Economic and policy aspects of a SARS-like episode," Working Papers 2004-09, FEDEA.
    17. Bambi, Mauro, 2015. "Time-to-build and the capital structure," Economics Letters, Elsevier, vol. 137(C), pages 222-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Brandt-Pollmann & Ralph Winkler & Sebastian Sager & Ulf Moslener & Johannes Schlöder, 2008. "Numerical Solution of Optimal Control Problems with Constant Control Delays," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 181-206, March.
    2. d’Albis, Hippolyte & Augeraud-Veron, Emmanuelle & Venditti, Alain, 2012. "Business cycle fluctuations and learning-by-doing externalities in a one-sector model," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 295-308.
    3. Raouf Boucekkine & David De la Croix & Omar Licandro, 2011. "Vintage Capital Growth Theory: Three Breakthroughs," Working Papers 565, Barcelona School of Economics.
    4. Augeraud-Veron, Emmanuelle & Bambi, Mauro, 2015. "Endogenous growth with addictive habits," Journal of Mathematical Economics, Elsevier, vol. 56(C), pages 15-25.
    5. Bambi, Mauro & Gozzi, Fausto & Licandro, Omar, 2014. "Endogenous growth and wave-like business fluctuations," Journal of Economic Theory, Elsevier, vol. 154(C), pages 68-111.
    6. Lin, Hwan C. & Shampine, L.F., 2014. "Finite-length Patents and Functional Differential Equations in a Non-scale R&D-based Growth Model," MPRA Paper 61603, University Library of Munich, Germany.
    7. Hwan C. Lin & L. F. Shampine, 2018. "R&D-based Calibrated Growth Models with Finite-Length Patents: A Novel Relaxation Algorithm for Solving an Autonomous FDE System of Mixed Type," Computational Economics, Springer;Society for Computational Economics, vol. 51(1), pages 123-158, January.
    8. Mauro Bambi & Cristina Girolami & Salvatore Federico & Fausto Gozzi, 2017. "Generically distributed investments on flexible projects and endogenous growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 521-558, February.
    9. Mauro Bambi, 2006. "Endogenous growth and time to build: the AK case," Computing in Economics and Finance 2006 77, Society for Computational Economics.
    10. Ralph Winkler, 2008. "Optimal control of pollutants with delayed stock accumulation," CER-ETH Economics working paper series 08/91, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Boucekkine, Raouf & Licandro, Omar & Puch, Luis A. & del Rio, Fernando, 2005. "Vintage capital and the dynamics of the AK model," Journal of Economic Theory, Elsevier, vol. 120(1), pages 39-72, January.
    12. Hippolyte d'Albis & Jean-Pierre Drugeon, 2020. "On Investment and Cycles in Explicitely Solved Vintage Capital Models," PSE Working Papers halshs-02570648, HAL.
    13. Raouf Boucekkine & David Croix & Omar Licandro, 2004. "MODELLING VINTAGE STRUCTURES WITH DDEs: PRINCIPLES AND APPLICATIONS," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 151-179.
    14. Peter Funk, 2005. "Competition and Growth in a Vintage Knowledge Model," Working Paper Series in Economics 15, University of Cologne, Department of Economics.
    15. Fabbri, Giorgio & Gozzi, Fausto, 2008. "Solving optimal growth models with vintage capital: The dynamic programming approach," Journal of Economic Theory, Elsevier, vol. 143(1), pages 331-373, November.
    16. Gamboa, Franklin & Maldonado, Wilfredo Leiva, 2014. "Feasibility and optimality of the initial capital stock in the Ramsey vintage capital model," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 40-45.
    17. Futagami, Koichi & Iwaisako, Tatsuro, 2007. "Dynamic analysis of patent policy in an endogenous growth model," Journal of Economic Theory, Elsevier, vol. 132(1), pages 306-334, January.
    18. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2005. "Environmental policy, the porter hypothesis and the composition of capital: Effects of learning and technological progress," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 434-446, September.
    19. Raurich, Xavier & Seegmuller, Thomas, 2019. "On the interplay between speculative bubbles and productive investment," European Economic Review, Elsevier, vol. 111(C), pages 400-420.
    20. d’Albis, Hippolyte & Augeraud-Véron, Emmanuelle & Hupkes, Hermen Jan, 2014. "Multiple solutions in systems of functional differential equations," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 50-56.

    More about this item

    Keywords

    Time--to--build; Shooting method; DDEs;
    All these keywords.

    JEL classification:

    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.