IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/255.html
   My bibliography  Save this paper

Estimation of Diffusions using Wavelet scaling methods

Author

Listed:
  • Esben Hoeg

Abstract

In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process)has been used to model non-speculative price processes. The Cox-Ingersoll-Ross process is widely used to model interest rate dynamics. We discuss parameter estimation of these processes using a new method, namely a Wavelet filter method. This approach is useful as it turns out that the resulting covariance function is decorrelated. We use Monte Carlo simulation to report the distribution of estimates.

Suggested Citation

  • Esben Hoeg, 2001. "Estimation of Diffusions using Wavelet scaling methods," Computing in Economics and Finance 2001 255, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:255
    as

    Download full text from publisher

    File URL: http://www.asb.dk/ifi/eh/sce-eh.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:etheor:v:13:y:1997:i:3:p:430-61 is not listed on IDEAS
    2. Overbeck, Ludger & Rydén, Tobias, 1997. "Estimation in the Cox-Ingersoll-Ross Model," Econometric Theory, Cambridge University Press, vol. 13(3), pages 430-461, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    2. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    3. Erik Lindström, 2007. "Estimating parameters in diffusion processes using an approximate maximum likelihood approach," Annals of Operations Research, Springer, vol. 151(1), pages 269-288, April.
    4. Mátyás Barczy & Kristóf Körmendi & Gyula Pap, 2016. "Statistical inference for critical continuous state and continuous time branching processes with immigration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 789-816, October.
    5. Lee, Myoung-jae & Li, Wen-juan, 2005. "Drift and diffusion function specification for short-term interest rates," Economics Letters, Elsevier, vol. 86(3), pages 339-346, March.
    6. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    7. Clark, Ephraim & Lakshmi, Geeta, 2007. "Assymetric information and the pricing of sovereign eurobonds: India 1990-1992," Global Finance Journal, Elsevier, vol. 18(1), pages 124-142.
    8. Huang, Jianhui & Ma, Chunhua & Zhu, Cai, 2011. "Estimation for discretely observed continuous state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1104-1111, August.
    9. Höök, Lars Josef & Lindström, Erik, 2016. "Efficient computation of the quasi likelihood function for discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 426-437.
    10. Matyas Barczy & Balazs Nyul & Gyula Pap, 2015. "Least squares estimation for the subcritical Heston model based on continuous time observations," Papers 1511.05948, arXiv.org, revised Aug 2018.
    11. Xu, Wei, 2014. "Parameter estimation in two-type continuous-state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 124-134.
    12. Jonas Vogt, 2017. "Doubly Stochastic Reduced Form Credit Risk Model and Default Probability Uncertainty – a Technical Toolkit," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(2), pages 1-2.
    13. Cleur, Eugene M & Manfredi, Piero, 1999. "One Dimensional SDE Models, Low Order Numerical Methods and Simulation Based Estimation: A Comparison of Alternative Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 13(2), pages 177-197, April.
    14. Nicole Hufnagel & Jeannette H. C. Woerner, 2022. "Martingale estimation functions for Bessel processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 337-353, July.
    15. Beáta Bolyog & Gyula Pap, 2019. "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 41-75, April.
    16. Ruicheng Yang & Li Li & Qi Jiang & Ji Qi, 2022. "Optimal bond issuance with cost and liquidity constraints for Chinese local governments: a multi-period stochastic programming approach," Empirical Economics, Springer, vol. 63(5), pages 2605-2632, November.
    17. Barczy, Mátyás & Körmendi, Kristóf & Pap, Gyula, 2015. "Statistical inference for 2-type doubly symmetric critical irreducible continuous state and continuous time branching processes with immigration," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 92-123.
    18. Lars Josef Hook & Erik Lindstrom, 2015. "Efficient Computation of the Quasi Likelihood function for Discretely Observed Diffusion Processes," Papers 1509.07751, arXiv.org.
    19. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    20. Pap Gyula & Szabó Tamás T., 2016. "Change detection in the Cox–Ingersoll–Ross model," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 21-40, September.

    More about this item

    Keywords

    Ornstein-Uhlenbeck process; CIR model; Wavelet transform;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.