IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp426-437.html
   My bibliography  Save this article

Efficient computation of the quasi likelihood function for discretely observed diffusion processes

Author

Listed:
  • Höök, Lars Josef
  • Lindström, Erik

Abstract

An efficient numerical method for nearly simultaneous computation of all conditional moments needed for quasi maximum likelihood estimation of parameters in discretely observed stochastic differential equations is presented. The method is not restricted to any particular dynamics of the stochastic differential equation and is virtually insensitive to the sampling interval. The key contribution is that computational complexity is sublinear in terms of expensive operations in the number of observations as all moments can be computed offline in a single operation. Simulations show that the bias of the method is small compared to the random error in the estimates, and to the bias of comparable methods. Furthermore the computational cost is comparable (actually faster for moderate and large data sets) to the simple, but in some applications badly biased, the Euler–Maruyama approximation.

Suggested Citation

  • Höök, Lars Josef & Lindström, Erik, 2016. "Efficient computation of the quasi likelihood function for discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 426-437.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:426-437
    DOI: 10.1016/j.csda.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301165
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    2. Erik Ekstrom & Per Lotstedt & Johan Tysk, 2009. "Boundary Values and Finite Difference Methods for the Single Factor Term Structure Equation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 253-259.
    3. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    4. Overbeck, Ludger & Rydén, Tobias, 1997. "Estimation in the Cox-Ingersoll-Ross Model," Econometric Theory, Cambridge University Press, vol. 13(3), pages 430-461, June.
    5. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    7. Yacine Ait--Sahalia & Per A. Mykland, 2003. "The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions," Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
    8. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    9. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    10. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Josef Hook & Erik Lindstrom, 2015. "Efficient Computation of the Quasi Likelihood function for Discretely Observed Diffusion Processes," Papers 1509.07751, arXiv.org.
    2. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    3. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    4. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    5. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    6. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Differential," Economics Working Papers 09-02, Queen's Management School, Queen's University Belfast.
    7. Michael Sørensen, 2008. "Efficient estimation for ergodic diffusions sampled at high frequency," CREATES Research Papers 2007-46, Department of Economics and Business Economics, Aarhus University.
    8. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    9. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    10. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    11. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    12. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    13. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    14. Erik Lindström, 2007. "Estimating parameters in diffusion processes using an approximate maximum likelihood approach," Annals of Operations Research, Springer, vol. 151(1), pages 269-288, April.
    15. Niu Wei-Fang, 2013. "Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 421-438, September.
    16. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    17. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    18. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    19. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    20. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:426-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.