IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201403.html
   My bibliography  Save this paper

Semiiparametric Selection Models with Binary Outcomes

Author

Listed:
  • Roger Klein

    (Rotgers University)

  • Chan Shen

    (The University of Texas MD Anderson Cancer Center)

  • Francis Vella

    (Georgetown University)

Abstract

This paper addresses the estimation of a semiparametric sample selection index model where both the selection rule and the outcome variable are binary. Since the marginal effects are often of primary interest and are difficult to recover in a semiparametric setting, we develop estimators for both the marginal effects and the underlying model parameters. The marginal effect estimator uses only observations where the selection probability is above a certain threshold. A key innovation is that this high probability set is adaptive to the data. The model parameter estimator is a quasi-likelihood estimator based on regular kernels with bias corrections. We establish their large sample properties and provide simulation evidence confirming that these estimators perform well in finite samples.

Suggested Citation

  • Roger Klein & Chan Shen & Francis Vella, 2014. "Semiiparametric Selection Models with Binary Outcomes," Departmental Working Papers 201403, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201403
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2014-03.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    2. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    3. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    4. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    5. Rothe, Christoph, 2009. "Semiparametric estimation of binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 153(1), pages 51-64, November.
    6. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    7. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    8. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    9. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    10. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    11. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    12. Whitney K. Newey, 2007. "NONPARAMETRIC CONTINUOUS/DISCRETE CHOICE MODELS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1429-1439, November.
    13. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    14. Klein, R.W., 1991. "Specification Tests for Binery Choice Models Based on Index Quantiles," Papers 71, Bell Communications - Economic Research Group.
    15. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
    16. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    17. Edward Vytlacil & Nese Yildiz, 2007. "Dummy Endogenous Variables in Weakly Separable Models," Econometrica, Econometric Society, vol. 75(3), pages 757-779, May.
    18. Klein, Roger & Shen, Chan, 2010. "Bias Corrections In Testing And Estimating Semiparametric, Single Index Models," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1683-1718, December.
    19. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers CWP55/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Roger & Shen, Chan & Vella, Francis, 2015. "Estimation of marginal effects in semiparametric selection models with binary outcomes," Journal of Econometrics, Elsevier, vol. 185(1), pages 82-94.
    2. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    3. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    4. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    6. Chesher, Andrew, 2013. "Semiparametric Structural Models Of Binary Response: Shape Restrictions And Partial Identification," Econometric Theory, Cambridge University Press, vol. 29(2), pages 231-266, April.
    7. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    8. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    9. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    10. Chen, Songnian & Zhou, Yahong, 2010. "Semiparametric and nonparametric estimation of sample selection models under symmetry," Journal of Econometrics, Elsevier, vol. 157(1), pages 143-150, July.
    11. Khan, Shakeeb & Nekipelov, Denis, 2024. "On uniform inference in nonlinear models with endogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
    12. repec:spo:wpmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    13. D’Haultfœuille, Xavier & Maurel, Arnaud & Zhang, Yichong, 2018. "Extremal quantile regressions for selection models and the black–white wage gap," Journal of Econometrics, Elsevier, vol. 203(1), pages 129-142.
    14. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    15. repec:spo:wpecon:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    16. Kamhon Kan & Chihwa Kao, 2005. "Simulation-Based Two-Step Estimation with Endogenous Regressors," Center for Policy Research Working Papers 76, Center for Policy Research, Maxwell School, Syracuse University.
    17. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    18. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    19. Mourifié, Ismael, 2015. "Sharp bounds on treatment effects in a binary triangular system," Journal of Econometrics, Elsevier, vol. 187(1), pages 74-81.
    20. Aradillas-Lopez, Andres, 2010. "Semiparametric estimation of a simultaneous game with incomplete information," Journal of Econometrics, Elsevier, vol. 157(2), pages 409-431, August.
    21. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    22. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    23. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    24. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.

    More about this item

    Keywords

    Semiparametric Binary Selection; Marginal Effects;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.