Quarterly Forecasting Model for India’s Economic Growth: Bayesian Vector Autoregression Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Duncan, Roberto & Martínez-García, Enrique, 2019.
"New perspectives on forecasting inflation in emerging market economies: An empirical assessment,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
- Roberto Duncan & Enrique Martínez García, 2018. "New Perspectives on Forecasting Inflation in Emerging Market Economies: An Empirical Assessment," Globalization Institute Working Papers 338, Federal Reserve Bank of Dallas.
- repec:zbw:bofitp:2014_022 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Iyer , Tara & Sen Gupta, Abhijit, 2019. "Nowcasting Economic Growth in India: The Role of Rainfall," ADB Economics Working Paper Series 593, Asian Development Bank.
- Barker, Jamie & Herrala, Risto, 2021. "Assessing the mid-term growth outlook for the Indian economy," BOFIT Policy Briefs 8/2021, Bank of Finland Institute for Emerging Economies (BOFIT).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024.
"The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
- Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Cambridge Working Papers in Economics 2418, Faculty of Economics, University of Cambridge.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Janeway Institute Working Papers 2413, Faculty of Economics, University of Cambridge.
- Martínez-García Enrique, 2018.
"Modeling time-variation over the business cycle (1960–2017): an international perspective,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
- Enrique Martínez García, 2018. "Modeling Time-Variation Over the Business Cycle (1960-2017): An International Perspective," Globalization Institute Working Papers 348, Federal Reserve Bank of Dallas.
- Aysun, Uluc & Wright, Cardel, 2024. "A two-step dynamic factor modelling approach for forecasting inflation in small open economies," Emerging Markets Review, Elsevier, vol. 62(C).
- Patricia Toledo & Roberto Duncan, 2024. "Forecasting food price inflation during global crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1087-1113, July.
- Cepni, Oguzhan & Clements, Michael P., 2024.
"How local is the local inflation factor? Evidence from emerging European countries,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
- Cepni, Oguzhan & Clements, Michael P., 2021. "How Local is the Local Inflation Factor? Evidence from Emerging European Countries," Working Papers 8-2021, Copenhagen Business School, Department of Economics.
- Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
- Dongchul Cho & Wankeun Oh, 2023. "Predictive Abilities of Inflation Expectations and Implications on Monetary Policy in Korea," Korean Economic Review, Korean Economic Association, vol. 39, pages 257-276.
More about this item
Keywords
Bayesian vector autoregressions; GDP growth; India; time series forecasting;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- F43 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Economic Growth of Open Economies
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2019-03-25 (Econometric Time Series)
- NEP-FOR-2019-03-25 (Forecasting)
- NEP-MAC-2019-03-25 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:adbewp:0573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Orlee Velarde (email available below). General contact details of provider: https://edirc.repec.org/data/eradbph.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.