IDEAS home Printed from https://ideas.repec.org/p/red/sed018/586.html
   My bibliography  Save this paper

What Economic Factors Underlie Connectedness in Corporate Credit Default Swaps: News vs. Macroeconomic Factors?

Author

Listed:
  • Andrew Castro

    (Michigan State University)

  • Neville Francis

    (UNC Chapel Hill)

Abstract

We examine the economic factors that underlie return and price volatility networks for corporate credit default swaps. After examining company-level networks we aggregate the data to study sector-level net connectedness. By introducing company news measures and macroeconomic covariates, we explore their effects on net connectedness. We find that no one factor explains connectedness across all sectors. Additionally, while returns networks are mainly influenced by news releases and macroeconomic factors are the main impetus behind price volatility networks, neither explain the general changes to net connectedness over time.

Suggested Citation

  • Andrew Castro & Neville Francis, 2018. "What Economic Factors Underlie Connectedness in Corporate Credit Default Swaps: News vs. Macroeconomic Factors?," 2018 Meeting Papers 586, Society for Economic Dynamics.
  • Handle: RePEc:red:sed018:586
    as

    Download full text from publisher

    File URL: https://red-files-public.s3.amazonaws.com/meetpapers/2018/paper_586.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Stefan Klößner & Sven Wagner, 2014. "Exploring All Var Orderings For Calculating Spillovers? Yes, We Can!—A Note On Diebold And Yilmaz (2009)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 172-179, January.
    4. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    5. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    6. Jun Pan & Kenneth J. Singleton, 2008. "Default and Recovery Implicit in the Term Structure of Sovereign CDS Spreads," Journal of Finance, American Finance Association, vol. 63(5), pages 2345-2384, October.
    7. Klößner, Stefan & Sekkel, Rodrigo, 2014. "International spillovers of policy uncertainty," Economics Letters, Elsevier, vol. 124(3), pages 508-512.
    8. Francis A. Longstaff & Arvind Rajan, 2008. "An Empirical Analysis of the Pricing of Collateralized Debt Obligations," Journal of Finance, American Finance Association, vol. 63(2), pages 529-563, April.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    11. Francis A. Longstaff & Jun Pan & Lasse H. Pedersen & Kenneth J. Singleton, 2011. "How Sovereign Is Sovereign Credit Risk?," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 75-103, April.
    12. Bostanci, Gorkem & Yilmaz, Kamil, 2020. "How connected is the global sovereign credit risk network?," Journal of Banking & Finance, Elsevier, vol. 113(C).
    13. José Da Fonseca & Katrin Gottschalk, 2020. "The Co‐Movement of Credit Default Swap Spreads, Equity Returns and Volatility: Evidence from Asia‐Pacific Markets," International Review of Finance, International Review of Finance Ltd., vol. 20(3), pages 551-579, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greenwood-Nimmo, Matthew & Nguyen, Viet Hoang & Shin, Yongcheol, 2023. "What is mine is yours: Sovereign risk transmission during the European debt crisis," Journal of Financial Stability, Elsevier, vol. 65(C).
    2. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    3. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    4. Greenwood-Nimmo, Matthew & Huang, Jingong & Nguyen, Viet Hoang, 2019. "Financial sector bailouts, sovereign bailouts, and the transfer of credit risk," Journal of Financial Markets, Elsevier, vol. 42(C), pages 121-142.
    5. Mardi Dungey & John Harvey & Pierre Siklos & Vladimir Volkov, 2017. "Signed spillover effects building on historical decompositions," CAMA Working Papers 2017-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Antonakakis, Nikolaos & Gabauer, David, 2017. "Refined Measures of Dynamic Connectedness based on TVP-VAR," MPRA Paper 78282, University Library of Munich, Germany.
    7. Bostanci, Gorkem & Yilmaz, Kamil, 2020. "How connected is the global sovereign credit risk network?," Journal of Banking & Finance, Elsevier, vol. 113(C).
    8. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    9. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    10. Dungey, Mardi & Harvey, John & Volkov, Vladimir, 2019. "The changing international network of sovereign debt and financial institutions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 60(C), pages 149-168.
    11. Younis, Ijaz & Shah, Waheed Ullah & Yousaf, Imran, 2023. "Static and dynamic linkages between oil, gold and global equity markets in various crisis episodes: Evidence from the Wavelet TVP-VAR," Resources Policy, Elsevier, vol. 80(C).
    12. Ozcan Ceylan, 2023. "Analysis of Dynamic Connectedness among Sovereign CDS Premia," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 9(1), pages 33-47, June.
    13. Min Zhang & Adam W. Kolkiewicz & Tony S. Wirjanto & Xindan Li, 2013. "The Impacts of Financial Crisis on Sovereign Credit Risk Analysis in Asia and Europe," Working Paper series 62_13, Rimini Centre for Economic Analysis.
    14. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    15. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    16. Gätjen, Rebekka & Schienle, Melanie, 2015. "Measuring connectedness of Euro area sovereign risk," SFB 649 Discussion Papers 2015-019, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    18. Christopher Thiem, 2020. "Cross-Category, Trans-Pacific Spillovers of Policy Uncertainty and Financial Market Volatility," Open Economies Review, Springer, vol. 31(2), pages 317-342, April.
    19. Neharika Sobti, 2018. "Domestic intermarket linkages: measuring dynamic return and volatility connectedness among Indian financial markets," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(4), pages 325-344, December.
    20. Jian Luo & Xiaoxia Ye & May Hu, 2016. "Counter-Credit-Risk Yield Spreads: A Puzzle in China's Corporate Bond Market," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 203-241, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed018:586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.