IDEAS home Printed from https://ideas.repec.org/p/rdg/emxxdp/em-dp2020-22.html
   My bibliography  Save this paper

A Pound Centric look at the Pound vs. Krona Exchange Rate Movement from 1844 to 1965

Author

Listed:
  • Andrew Clark

    (Department of Economics, University of Reading)

Abstract

A longitudinal (1844-1965) study of the Pound Krona exchange rate is conducted utilizing London Times article news sentiment, gold price, GDP, and other relevant metrics to create a dynamic systems state-based model to predict the Pound Krona yearly exchange rate. The created model slightly outperforms a naive random walk forecasting model.

Suggested Citation

  • Andrew Clark, 2020. "A Pound Centric look at the Pound vs. Krona Exchange Rate Movement from 1844 to 1965," Economics Discussion Papers em-dp2020-22, Department of Economics, University of Reading.
  • Handle: RePEc:rdg:emxxdp:em-dp2020-22
    as

    Download full text from publisher

    File URL: http://www.reading.ac.uk/web/FILES/economics/emdp202022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    4. Voshmgir, Shermin & Zargham, Michael, 2019. "Foundations of Cryptoeconomic Systems," Working Paper Series/Institute for Cryptoeconomics/Interdisciplinary Research 1, WU Vienna University of Economics and Business.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    2. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Sager, Michael & Taylor, Mark P., 2014. "Generating currency trading rules from the term structure of forward foreign exchange premia," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 230-250.
    5. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    6. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    7. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.
    8. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    9. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    10. Cerrato, Mario & Kim, Hyunsok & MacDonald, Ronald, 2015. "Microstructure order flow: statistical and economic evaluation of nonlinear forecasts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 40-52.
    11. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    12. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    13. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    14. Harm Bandholz & Jorg Clostermann & Franz Seitz, 2009. "Explaining the US bond yield conundrum," Applied Financial Economics, Taylor & Francis Journals, vol. 19(7), pages 539-550.
    15. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    16. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    17. Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
    18. Bertrand Maillet & Thierry Michel, 2000. "Further insights on the puzzle of technical analysis profitability," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 196-224.
    19. Wu, Jyh-Lin, 1999. "A re-examination of the exchange rate-interest differential relationship: evidence from Germany and Japan," Journal of International Money and Finance, Elsevier, vol. 18(2), pages 319-336, February.
    20. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.

    More about this item

    Keywords

    Econometrics; Machine Learning; Dynamic Systems; Complex Systems;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:emxxdp:em-dp2020-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexander Mihailov (email available below). General contact details of provider: https://edirc.repec.org/data/derdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.