IDEAS home Printed from https://ideas.repec.org/p/rco/dpaper/74.html
   My bibliography  Save this paper

A Compact Topology for Sigma-Algebra Convergence

Author

Listed:
  • Beissner, Patrick

    (HU Berlin)

  • Tölle, Jonas

    (Uni Augsburg)

Abstract

We propose a sequential topology on the collection of sub-sigma-algebras included in a separable probability space. We prove compactness of the conditional expectations with respect to L2-bounded random variables along sequences of sub-sigma-algebras. The varying index of measurability is captured by a bundle space construction. As a consequence, we establish the compactness of the space of sub-sigma-algebras. The proposed topology preserves independence and is compatible with join and meet operations. Finally, a new application to information economics is discussed.

Suggested Citation

  • Beissner, Patrick & Tölle, Jonas, 2018. "A Compact Topology for Sigma-Algebra Convergence," Rationality and Competition Discussion Paper Series 74, CRC TRR 190 Rationality and Competition.
  • Handle: RePEc:rco:dpaper:74
    as

    Download full text from publisher

    File URL: https://rationality-and-competition.de/wp-content/uploads/discussion_paper/74.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Bergemann & Stephen Morris, 2016. "Information Design, Bayesian Persuasion, and Bayes Correlated Equilibrium," American Economic Review, American Economic Association, vol. 106(5), pages 586-591, May.
    2. Khan, M. Ali & Sun, Yeneng & Tourky, Rabee & Zhang, Zhixiang, 2008. "Similarity of differential information with subjective prior beliefs," Journal of Mathematical Economics, Elsevier, vol. 44(9-10), pages 1024-1039, September.
    3. Cotter, Kevin D., 1986. "Similarity of information and behavior with a pointwise convergence topology," Journal of Mathematical Economics, Elsevier, vol. 15(1), pages 25-38, February.
    4. Stinchcombe, Maxwell B., 1990. "Bayesian information topologies," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 233-253.
    5. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Áron Tóbiás, 2023. "Cognitive limits and preferences for information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 221-253, June.
    2. Van Zandt, Timothy, 2002. "Information, measurability, and continuous behavior," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 293-309, November.
    3. Fukuda, Satoshi, 2019. "Epistemic foundations for set-algebraic representations of knowledge," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 73-82.
    4. Barbie, Martin & Gupta, Abhishek, 2014. "The topology of information on the space of probability measures over Polish spaces," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 98-111.
    5. M. Ali Khan & Haomiao Yu & Zhixiang Zhang, 2019. "Information Structures on a General State Space: An Equivalence Theorem and an Application," Working Papers 076, Ryerson University, Department of Economics.
    6. Ulrich Schwalbe, 1999. "The core of an exchange economy with asymmetric information," Journal of Economics, Springer, vol. 70(2), pages 155-185, June.
    7. Ezra Einy & Ori Haimanko & Diego Moreno & Benyamin Shitovitz, 2005. "On the continuity of equilibrium and core correspondences in economies with differential information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(4), pages 793-812, November.
    8. Ezra Einy & Ori Haimanko & Diego Moreno & Benyamin Shitovitz, 2008. "Uniform Continuity of the Value of Zero-Sum Games with Differential Information," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 552-560, August.
    9. Beißner, Patrick & Khan, M. Ali, 2019. "On Hurwicz–Nash equilibria of non-Bayesian games under incomplete information," Games and Economic Behavior, Elsevier, vol. 115(C), pages 470-490.
    10. Khan, M. Ali & Sun, Yeneng & Tourky, Rabee & Zhang, Zhixiang, 2008. "Similarity of differential information with subjective prior beliefs," Journal of Mathematical Economics, Elsevier, vol. 44(9-10), pages 1024-1039, September.
    11. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    12. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    13. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    14. Askoura, Youcef & Billot, Antoine, 2021. "Social decision for a measure society," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    15. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    16. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    17. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    18. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    19. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    20. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rco:dpaper:74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Viviana Lalli (email available below). General contact details of provider: https://rationality-and-competition.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.