IDEAS home Printed from https://ideas.repec.org/p/pui/dpaper/169.html
   My bibliography  Save this paper

Using Large-Scale Social Media Data for Population-Level Mental Health Monitoring and Public Sentiment Assessment: A Case Study of Thailand

Author

Listed:
  • Suppawong Tuarob
  • Thanapon Noraset
  • Tanisa Tawichsri

Abstract

Mental health problems are among major public health concerns during the COVID-19 pandemic, given heightened uncertainties and drastic changes in lifestyles. However, mental health problem prevention and monitoring could be greatly improved given advancements in deep-learning techniques and readily available social media messages. This research uses deep learning algorithms to extract emotion, mood, and psychological cues from social media messages and then aggregates these signals to track population-level mental health. To verify the accuracy of our proposed approaches, we compared our findings to the actual number of patients treated for depression, attempted suicides, and self-harm cases reported by Thailand's Department of Mental Health. We discovered a strong correlation between the predicted mental signals and actual depression, suicide, and self-harm (injured) cases. Finally, we also create a database and user-friendly interface to facilitate researchers and policymakers to explore our extracted mental signals for further applications such as policy sentiment assessment.

Suggested Citation

  • Suppawong Tuarob & Thanapon Noraset & Tanisa Tawichsri, 2022. "Using Large-Scale Social Media Data for Population-Level Mental Health Monitoring and Public Sentiment Assessment: A Case Study of Thailand," PIER Discussion Papers 169, Puey Ungphakorn Institute for Economic Research.
  • Handle: RePEc:pui:dpaper:169
    as

    Download full text from publisher

    File URL: https://www.pier.or.th/files/dp/pier_dp_169.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gorodnichenko, Yuriy & Pham, Tho & Talavera, Oleksandr, 2021. "Social media, sentiment and public opinions: Evidence from #Brexit and #USElection," European Economic Review, Elsevier, vol. 136(C).
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    4. Wingyan Chung & Daniel Zeng, 2016. "Social-media-based public policy informatics: Sentiment and network analyses of U.S. Immigration and border security," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(7), pages 1588-1606, July.
    5. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    6. Abeed Sarker & Karen O’Connor & Rachel Ginn & Matthew Scotch & Karen Smith & Dan Malone & Graciela Gonzalez, 2016. "Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter," Drug Safety, Springer, vol. 39(3), pages 231-240, March.
    7. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    8. Suppawong Tuarob & Poom Wettayakorn & Ponpat Phetchai & Siripong Traivijitkhun & Sunghoon Lim & Thanapon Noraset & Tipajin Thaipisutikul, 2021. "DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-32, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    2. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    4. France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
    5. Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
    6. Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
    7. Resce, Giuliano & Maynard, Diana, 2018. "What matters most to people around the world? Retrieving Better Life Index priorities on Twitter," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 61-75.
    8. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
    9. Enrico di Bella & Lucia Leporatti & Filomena Maggino, 2018. "Big Data and Social Indicators: Actual Trends and New Perspectives," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(3), pages 869-878, February.
    10. Lahiri, Kajal & Monokroussos, George & Zhao, Yongchen, 2013. "The yield spread puzzle and the information content of SPF forecasts," Economics Letters, Elsevier, vol. 118(1), pages 219-221.
    11. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    12. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    13. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    14. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    15. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    16. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    17. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    18. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, May.
    19. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    20. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.

    More about this item

    Keywords

    Mental Health; Natural Language Processing; Deep Learning; Social Networks;
    All these keywords.

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pui:dpaper:169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/pierbth.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.