IDEAS home Printed from https://ideas.repec.org/p/pri/econom/2019-1.html
   My bibliography  Save this paper

Managing a Crypto-Currency Portfolio Via Minmax Drawdown Control

Author

Listed:
  • Sylvain Chassang

    (New York University)

Abstract

Crypto-currencies and other innovative asset classes present a fundamental challenge for quantitative asset-allocation. Because the track record of innovative assets is by definition short, it is difficult to form reliable estimates of expected returns and covariance matrices needed as inputs for standard portfolio optimization. Even if such estimates are available, they may be useless to investors if the behavior of underlying assets changes over time. Building on the MinMax Drawdown Control framework of Chassang (2018), this paper proposes a conceptually attractive and empirically successful approach to build benchmark portfolios of crypto-currencies and other innovative assets.

Suggested Citation

  • Sylvain Chassang, 2019. "Managing a Crypto-Currency Portfolio Via Minmax Drawdown Control," Working Papers 2019-1, Princeton University. Economics Department..
  • Handle: RePEc:pri:econom:2019-1
    as

    Download full text from publisher

    File URL: https://www.sylvainchassang.org/assets/papers/crypto_portfolio_management.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    2. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    3. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    4. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    5. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    6. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    7. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Portfolio benefits of adding corporate credit default swap indices: evidence from North America and Europe," Review of Derivatives Research, Springer, vol. 22(2), pages 203-259, July.
    8. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    9. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    10. Białkowski, Jędrzej, 2020. "Cryptocurrencies in institutional investors’ portfolios: Evidence from industry stop-loss rules," Economics Letters, Elsevier, vol. 191(C).
    11. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    12. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    13. David E. Allen & Michael McAleer & Abhay K. Singh, 2016. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2017-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    15. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    16. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    17. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    18. Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
    19. Sokolovskyi, Dmytro, 2018. "Analysis of dependencies between state tax behavior and macroeconomic indicators," MPRA Paper 86417, University Library of Munich, Germany.
    20. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.

    More about this item

    Keywords

    crypto-currencies; MinMax Drawdown Control; prior-free asset allocation; agnostic asset allocation; innovative assets;
    All these keywords.

    JEL classification:

    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pri:econom:2019-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bobray Bordelon (email available below). General contact details of provider: https://edirc.repec.org/data/deprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.