IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202435.html
   My bibliography  Save this paper

Forecasting U.S. Recessions Using Over 150 Years of Data: Stock-Market Moments versus Oil-Market Moments

Author

Listed:
  • Elie Bouri

    (Adnan Kassar School of Business, Lebanese American University, Lebanon)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany.)

  • Onur Polat

    (Department of Public Finance, Bilecik Seyh Edebali University, Bilecik, Turkiye)

Abstract

Using monthly data from 1871 to 2024 and logistic models with shrinkage estimators, we compare the contribution of stock and oil-market moments (returns, volatility, skewness, and kurtosis) to the accuracy of out-of-sample forecasts of U.S. recessions at various forecast horizons, while controling for various standard macroeconomic predictors and the total connectedness indexes of the moments. Adding stock-market moments to the potential predictors improves significantly the accuracy of out-of-sample forecasts at the long forecast horizon, whereas oil-market moments and connectedness indexes do not contribute much. The lagged recession dummy, the term spread, and stock returns are found to be the top predictors of recessions.

Suggested Citation

  • Elie Bouri & Rangan Gupta & Christian Pierdzioch & Onur Polat, 2024. "Forecasting U.S. Recessions Using Over 150 Years of Data: Stock-Market Moments versus Oil-Market Moments," Working Papers 202435, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202435
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    4. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    5. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    6. Huang, Yu-Fan & Startz, Richard, 2020. "Improved recession dating using stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 507-514.
    7. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    8. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    9. Balcilar, Mehmet & Gupta, Rangan & Wohar, Mark E., 2017. "Common cycles and common trends in the stock and oil markets: Evidence from more than 150years of data," Energy Economics, Elsevier, vol. 61(C), pages 72-86.
    10. Rangan Gupta & Eric Olson & Mark E. Wohar, 2017. "Forecasting key US macroeconomic variables with a factor‐augmented Qual VAR," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 640-650, September.
    11. Lutz Kilian & Robert J. Vigfusson, 2017. "The Role of Oil Price Shocks in Causing U.S. Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
    12. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    13. Pablo Burriel & Iván Kataryniuk & Carlos Moreno Pérez & Francesca Viani, 2024. "A New Supply Bottlenecks Index Based on Newspaper Data," International Journal of Central Banking, International Journal of Central Banking, vol. 20(2), pages 17-67, April.
    14. Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
    15. Gupta, Rangan & Pierdzioch, Christian & Salisu, Afees A., 2022. "Oil-price uncertainty and the U.K. unemployment rate: A forecasting experiment with random forests using 150 years of data," Resources Policy, Elsevier, vol. 77(C).
    16. Darwin Choi & Zhenyu Gao & Wenxi Jiang, 2020. "Attention to Global Warming," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1112-1145.
    17. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    18. Carnero, M. Angeles & León, Angel & Ñíguez, Trino-Manuel, 2023. "Skewness in energy returns: estimation, testing and retain-->implications for tail risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 178-189.
    19. Lyócsa, Štefan & Výrost, Tomáš & Plíhal, Tomáš, 2021. "A tale of tails : New evidence on the growth-return nexus," Finance Research Letters, Elsevier, vol. 38(C).
    20. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    21. Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
    22. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    23. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    24. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    25. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2017. "Do leading indicators forecast U.S. recessions? A nonlinear re†evaluation using historical data," International Finance, Wiley Blackwell, vol. 20(3), pages 289-316, December.
    26. Nekhili, Ramzi & Bouri, Elie, 2023. "Higher-order moments and co-moments' contribution to spillover analysis and portfolio risk management," Energy Economics, Elsevier, vol. 119(C).
    27. Bouri, Elie & Lei, Xiaojie & Jalkh, Naji & Xu, Yahua & Zhang, Hongwei, 2021. "Spillovers in higher moments and jumps across US stock and strategic commodity markets," Resources Policy, Elsevier, vol. 72(C).
    28. Kurov, Alexander & Olson, Eric & Zaynutdinova, Gulnara R., 2022. "When does the fed care about stock prices?," Journal of Banking & Finance, Elsevier, vol. 142(C).
    29. Kim, Woo Chang & Fabozzi, Frank J. & Cheridito, Patrick & Fox, Charles, 2014. "Controlling portfolio skewness and kurtosis without directly optimizing third and fourth moments," Economics Letters, Elsevier, vol. 122(2), pages 154-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Foglia & Vasilios Plakandaras & Rangan Gupta & Elie Bouri, 2023. "Multi-Layer Spillovers between Volatility and Skewness in International Stock Markets Over a Century of Data: The Role of Disaster Risks," Working Papers 202337, University of Pretoria, Department of Economics.
    2. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    3. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    4. Sheng, Xin & Marfatia, Hardik A. & Gupta, Rangan & Ji, Qiang, 2021. "House price synchronization across the US states: The role of structural oil shocks," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    5. He, Xie & Hamori, Shigeyuki, 2024. "Asymmetric Higher-Moment spillovers between sustainable and traditional investments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 97(C).
    6. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    7. Ben Cheikh, Nidhaleddine & Ben Naceur, Sami & Kanaan, Oussama & Rault, Christophe, 2021. "Investigating the asymmetric impact of oil prices on GCC stock markets," Economic Modelling, Elsevier, vol. 102(C).
    8. Bouri, Elie & Jalkh, Naji, 2023. "Spillovers of joint volatility-skewness-kurtosis of major cryptocurrencies and their determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. He, Xie & Hamori, Shigeyuki, 2024. "The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    10. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    11. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    12. Yue, Tian & Li, Lu-Lu & Ruan, Xinfeng & Zhang, Jin E., 2024. "Smirking in the energy market: Evidence from the Chinese crude oil options market," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    13. Zhou, Donghai & Liu, Xiaoxing & Tang, Chun, 2024. "Does the international oil market interact with China’s financial market? New evidence from time-varying higher moments," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    14. Marfatia, Hardik A. & Gupta, Rangan & Cakan, Esin, 2021. "Dynamic impact of the U.S. monetary policy on oil market returns and volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 159-169.
    15. Elie Bouri & Rangan Gupta & Asingamaanda Liphadzi & Christian Pierdzioch, 2024. "Forecasting Stock Returns Volatility of the G7 Over Centuries: The Role of Climate Risks," Working Papers 202424, University of Pretoria, Department of Economics.
    16. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    17. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2023. "The impact of the COVID-19 pandemic and Russia-Ukraine war on multiscale spillovers in green finance markets: Evidence from lower and higher order moments," International Review of Financial Analysis, Elsevier, vol. 89(C).
    18. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).
    19. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
    20. Darko B. Vuković & Senanu Dekpo-Adza & Vladislav Khmelnitskiy & Mustafa Özer, 2023. "Spillovers across the Asian OPEC+ Financial Market," Mathematics, MDPI, vol. 11(18), pages 1-23, September.

    More about this item

    Keywords

    Recessions; Stock-market and oil-market moments; Forecasting; Shrinkage estimators; AUC statistics;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.