IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201679.html
   My bibliography  Save this paper

The Predictive Power of Industrial Electricity Usage Revisited: Evidence from Nonparametric Causality Tests

Author

Listed:
  • Matteo Bonato

    (Department of Economics and Econometrics, University of Johannesburg, South Africa)

  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, South Africa)

Abstract

Da et al. (2015b) report that the industrial electricity usage growth rate carries predictive ability over stock returns up to one year. Using the recently developed nonparametric causality test by Nishiyama et al. (2011), we show that the predictive power of industrial electricity usage can be explained by an “industry effect” that is transmitted via the volatility channel. We argue that the countercyclical premium associated with industrial electricity usage growth is driven by the industry components that drive stock reversals, thus resulting in the negative relationship between today’s industrial electricity usage and stock returns in the future. The findings are in line with the notion that the returns on industry portfolios are informative about macroeconomic fundamentals and suggest that the informational value of industrial electricity usage as a business cycle variable may be an artifact of return reversals driven by past industry performance

Suggested Citation

  • Matteo Bonato & Riza Demirer & Rangan Gupta, 2016. "The Predictive Power of Industrial Electricity Usage Revisited: Evidence from Nonparametric Causality Tests," Working Papers 201679, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201679
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    3. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    4. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Martin Lettau & Sydney Ludvigson, 2009. "Euler Equation Errors," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 255-283, April.
    7. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    8. Tse, Yiuman, 2015. "Do industries lead stock markets? A reexamination," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 195-203.
    9. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    10. Wu, Yuliang & Mazouz, Khelifa, 2016. "Long-term industry reversals," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 236-250.
    11. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    12. Chou, Pin-Huang & Ho, Po-Hsin & Ko, Kuan-Cheng, 2012. "Do industries matter in explaining stock returns and asset-pricing anomalies?," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 355-370.
    13. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    14. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karmakar, Sayar & Demirer, Riza & Gupta, Rangan, 2021. "Bitcoin mining activity and volatility dynamics in the power market," Economics Letters, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirer, Riza & Pierdzioch, Christian & Zhang, Huacheng, 2017. "On the short-term predictability of stock returns: A quantile boosting approach," Finance Research Letters, Elsevier, vol. 22(C), pages 35-41.
    2. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    3. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    4. Yun‐Huan Lee & Tzu‐Hsiang Liao & Hsiu‐Chuan Lee, 2022. "Overnight returns of industry exchange‐traded funds, investor sentiment, and futures market returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 1114-1134, June.
    5. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    6. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    7. Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    8. Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
    9. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    10. David Haab & Dr. Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.
    11. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    12. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    13. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    14. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    15. Ólan Henry & Semih Kerestecioglu & Sam Pybis, 2024. "Can financial uncertainty forecast aggregate stock market returns?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 33(2), pages 91-111, May.
    16. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    17. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    18. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    19. Marshall, Ben R. & Nguyen, Hung T. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2021. "Country governance and international equity returns," Journal of Banking & Finance, Elsevier, vol. 122(C).
    20. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.

    More about this item

    Keywords

    Asset Returns; Industry; Realized Volatility; Nonlinear Causality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.