IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/9871.html
   My bibliography  Save this paper

A Non-Random Walk down Canary Wharf

Author

Listed:
  • Canegrati, Emanuele

Abstract

In this paper I perform a panel data analysis to evaluate whether �- nancial technical indicators are able to predict stock market returns. By using a panel of 40 stocks taken from the Financial Times Stock Exchange (FTSE) observed in 2004, I test the ability of 75 amongst the most famous technical indicators used by traders to predict next-day returns. Surpris- ingly, results are robust in demonstrating that many of these are good predictors, supporting the validity of the technical analysis.

Suggested Citation

  • Canegrati, Emanuele, 2008. "A Non-Random Walk down Canary Wharf," MPRA Paper 9871, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:9871
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/9871/1/MPRA_paper_9871.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    2. Kang, Suk, 1985. "A note on the equivalence of specification tests in the two-factor multivariate variance components model," Journal of Econometrics, Elsevier, vol. 28(2), pages 193-203, May.
    3. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    4. Nerlove, Marc, 1971. "A Note on Error Components Models," Econometrica, Econometric Society, vol. 39(2), pages 383-396, March.
    5. Carol L. Osler, 2000. "Support for resistance: technical analysis and intraday exchange rates," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 53-68.
    6. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    7. Amemiya, Takeshi, 1971. "The Estimation of the Variances in a Variance-Components Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 12(1), pages 1-13, February.
    8. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    12. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    13. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekiros, Stelios D., 2015. "Heuristic learning in intraday trading under uncertainty," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 34-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    2. Yu Wang & Haicheng Shu, 2019. "Evaluating the Performance of Factor Pricing Models for Different Stock Market Trends: Evidence from China," Working Papers 2019-10-10, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    4. Reboredo, Juan C. & Ugolini, Andrea, 2022. "Climate transition risk, profitability and stock prices," International Review of Financial Analysis, Elsevier, vol. 83(C).
    5. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    6. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    7. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    8. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    9. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    10. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    11. Hoechle, Daniel & Schmid, Markus & Zimmermann, Heinz, 2012. "Decomposing Performance," Working Papers on Finance 1216, University of St. Gallen, School of Finance, revised Nov 2015.
    12. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    13. Auer, Benjamin R. & Rottmann, Horst, 2019. "Have capital market anomalies worldwide attenuated in the recent era of high liquidity and trading activity?," Journal of Economics and Business, Elsevier, vol. 103(C), pages 61-79.
    14. He, Wen & Shen, Jianfeng, 2014. "Do foreign investors improve informational efficiency of stock prices? Evidence from Japan," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 32-48.
    15. Jacinta Chan Phooi M’ng & Rozaimah Zainudin, 2016. "Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-19, August.
    16. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    17. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    18. Getmansky, Mila & Lo, Andrew W. & Makarov, Igor, 2004. "An econometric model of serial correlation and illiquidity in hedge fund returns," Journal of Financial Economics, Elsevier, vol. 74(3), pages 529-609, December.
    19. Elif Guneren Genc & Ozlem Deniz Basar, 2017. "The Impact of OECD Countries¡¯ Macroeconomic Factors on Turkey¡¯s Foreign Trade," Research in World Economy, Research in World Economy, Sciedu Press, vol. 8(1), pages 24-36, June.
    20. Stephan Schulmeister, 2007. "The Interaction Between the Aggregate Behaviour of Technical Trading Systems and Stock Price Dynamics," WIFO Working Papers 290, WIFO.

    More about this item

    Keywords

    technical analysis; random walk hypothesis; econometrics finance;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:9871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.