IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/9528.html
   My bibliography  Save this paper

A simple model of decision making: How to avoid large outliers?

Author

Listed:
  • Varsanyi, Zoltan

Abstract

In this paper I present a simple model through which I examine how large unwanted outcomes in a process subject to one’s decisions can be avoided. The paper has implications for decision makers in the field of economics, financial markets and also everyday life. Probably the most interesting conclusion is that, in certain problems, in order to avoid large unwanted outcomes one, regularly and intentionally, has to make decisions that are not optimal according to his/her existing preference. The reason for it is that the decision rule might get “overfitted” to one’s (recent) experience and may give wrong signals if there is a change, even as temporary as in one single period, in the environment in which decisions are made. I find the optimal decision making strategy in an example case – the optimal strategy, however, may well be different in different real-world situations.

Suggested Citation

  • Varsanyi, Zoltan, 2008. "A simple model of decision making: How to avoid large outliers?," MPRA Paper 9528, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:9528
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/9528/1/MPRA_paper_9528.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/11070/1/MPRA_paper_11070.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    2. Riccardo Rebonato, 2007. "Introduction to Plight of the Fortune Tellers: Why We Need to Manage Financial Risk Differently," Introductory Chapters, in: Plight of the Fortune Tellers: Why We Need to Manage Financial Risk Differently, Princeton University Press.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    2. Petroni, Filippo & Rotundo, Giulia, 2008. "Effectiveness of measures of performance during speculative bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3942-3948.
    3. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    4. Shiryaev, Albert N. & Zhitlukhin, Mikhail N. & Ziemba, William T., 2014. "Land and stock bubbles, crashes and exit strategies in Japan circa 1990 and in 2013," LSE Research Online Documents on Economics 59288, London School of Economics and Political Science, LSE Library.
    5. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    6. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. C. Vladimir Rodríguez-Caballero & Mauricio Villanueva-Domínguez, 2022. "Predicting cryptocurrency crash dates," Empirical Economics, Springer, vol. 63(6), pages 2855-2873, December.
    8. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    9. Wang, Chengjin & Gao, Yudong & Li, Honggang, 2021. "Information interaction, behavioral synchronization and asset market volatility," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    10. Ludovic Tangpi & Shichun Wang, 2022. "Optimal Bubble Riding: A Mean Field Game with Varying Entry Times," Papers 2209.04001, arXiv.org, revised Jan 2024.
    11. Hideyuki Takagi, 2021. "Exploring the Endogenous Nature of Meme Stocks Using the Log-Periodic Power Law Model and Confidence Indicator," Papers 2110.06190, arXiv.org.
    12. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    13. Andersen, J.V. & Sornette, D., 2004. "Fearless versus fearful speculative financial bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 565-585.
    14. Marcel Ausloos, 2014. "A biased view of a few possible components when reflecting on the present decade financial and economic crisis," Papers 1412.0127, arXiv.org.
    15. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    16. Alejandro Reveiz & Carlos León & Freddy H. Castro & Gabriel piraquive, 2009. "Modelo de simulación del valor de la pensión de un trabajador en Colombia," Borradores de Economia 553, Banco de la Republica de Colombia.
    17. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    18. Pierluigi Vellucci, 2021. "A critique of financial neoliberalism: a perspective combining multidisciplinary methods and commodity markets," SN Business & Economics, Springer, vol. 1(3), pages 1-11, March.
    19. Sandhya Devi, 2016. "Financial Market Dynamics: Superdiffusive or not?," Papers 1608.07752, arXiv.org, revised Sep 2017.
    20. Devi, Sandhya, 2016. "Financial Market Dynamics: Superdiffusive or not?," MPRA Paper 73327, University Library of Munich, Germany, revised 24 Aug 2016.

    More about this item

    Keywords

    endogeneity; non-stacionarity; outliers; simulation; uncertainty;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:9528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.