IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/93398.html
   My bibliography  Save this paper

Monotonic Estimation for the Survival Probability over a Risk-Rated Portfolio by Discrete-Time Hazard Rate Models

Author

Listed:
  • Yang, Bill Huajian

Abstract

Monotonic estimation for the survival probability of a loan in a risk-rated portfolio is based on the observation arising, for example, from loan pricing that a loan with a lower credit risk rating is more likely to survive than a loan with a higher credit risk rating, given the same additional risk covariates. Two probit-type discrete-time hazard rate models that generate monotonic survival probabilities are proposed in this paper. The first model calculates the discrete-time hazard rate conditional on systematic risk factors. As for the Cox proportion hazard rate model, the model formulates the discrete-time hazard rate by including a baseline component. This baseline component can be estimated outside the model in the absence of model covariates using the long-run average discrete-time hazard rate. This results in a significant reduction in the number of parameters to be otherwise estimated inside the model. The second model is a general form model where loan level factors can be included. Parameter estimation algorithms are also proposed. The models and algorithms proposed in this paper can be used for loan pricing, stress testing, expected credit loss estimation, and modeling of the probability of default term structure.

Suggested Citation

  • Yang, Bill Huajian, 2019. "Monotonic Estimation for the Survival Probability over a Risk-Rated Portfolio by Discrete-Time Hazard Rate Models," MPRA Paper 93398, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:93398
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/93398/1/MPRA_paper_93398.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Potharst, R. & Feelders, A.J., 2002. "Classification Trees for Problems with Monotonicity Constraints," ERIM Report Series Research in Management ERS-2002-45-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bill Huajian, 2014. "Modeling Systematic Risk and Point-in-Time Probability of Default under the Vasicek Asymptotic Single Risk Factor Model Framework," MPRA Paper 59025, University Library of Munich, Germany.
    2. Yang, Bill Huajian, 2017. "Point-in-Time PD Term Structure Models with Loan Credit Quality as a Component," MPRA Paper 80641, University Library of Munich, Germany.
    3. Yang, Bill Huajian & Du, Zunwei, 2016. "Rating Transition Probability Models and CCAR Stress Testing: Methodologies and implementations," MPRA Paper 76270, University Library of Munich, Germany.
    4. Yang, Bill Huajian, 2013. "Estimating Long-Run PD, Asset Correlation, and Portfolio Level PD by Vasicek Models," MPRA Paper 57244, University Library of Munich, Germany.
    5. Yang, Bill Huajian & Du, Zunwei, 2015. "Stress Testing and Modeling of Rating Migration under the Vasicek Model Framework - Empirical approaches and technical implementation," MPRA Paper 65168, University Library of Munich, Germany.
    6. Yang, Bill Huajian, 2017. "Forward Ordinal Probability Models for Point-in-Time Probability of Default Term Structure," MPRA Paper 79934, University Library of Munich, Germany.
    7. Yang, Bill Huajian, 2017. "Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing," MPRA Paper 76271, University Library of Munich, Germany.
    8. Yang, Bill Huajian & Wu, Biao & Cui, Kaijie & Du, Zunwei & Fei, Glenn, 2019. "IFRS9 Expected Credit Loss Estimation: Advanced Models for Estimating Portfolio Loss and Weighting Scenario Losses," MPRA Paper 93634, University Library of Munich, Germany.
    9. Gady Jacoby & Chuan Liao & Jonathan A. Batten, 2007. "A Pure Test for the Elasticity of Yield Spreads," The Institute for International Integration Studies Discussion Paper Series iiisdp195, IIIS.
    10. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    11. Neus, Werner, 2014. "Eigenkapitalnormen, Boni und Risikoanreize in Banken," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(2), pages 92-107.
    12. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    13. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    14. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    15. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    16. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    17. Milne, Alistair, 2014. "Distance to default and the financial crisis," Journal of Financial Stability, Elsevier, vol. 12(C), pages 26-36.
    18. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    19. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    20. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.

    More about this item

    Keywords

    loan pricing; survival probability; Cox proportion hazard rate model; baseline hazard rate; forward probability of default; probability of default term structure;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:93398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.