IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/76271.html
   My bibliography  Save this paper

Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing

Author

Listed:
  • Yang, Bill Huajian

Abstract

Rating transition models ([8], [13]) have been widely used for multi-period scenario loss projection for CCAR stress testing and IFRS 9 expected credit loss estimation. Though the cumulative probability of default (PD) for a rating can be derived by repeatedly applying the migration matrix at each single forward scenario sequentially, divergence between the predicted and realized cumulative default rates can be significant, particularly when the predicting horizon extends to longer periods ([4]). In this paper, we propose approaches to modeling the forward PDs directly. The proposed models are structured via a credit index, representing the systematic risk for the portfolio explained by a list of macroeconomic variables, together with the risk sensitivity with respect to the credit index, for each rating and each forward term. An algorithm for parameter estimation is proposed based on maximum likelihood of observing the default frequency for each non-default rating and each forward term. The proposed models and approaches are validated on a corporate portfolio, where a forward PD model and a point-in-time rating transition model are fitted. It is observed that both models demonstrate strong strengths in predicting portfolio quarterly default rate (i.e. in one-term horizon), but the term model outperforms in general the transition model as the predicting horizon extends to longer periods (e.g., 1-year or 2-year horizons), due to the fact that the term model is calibrated over a longer horizon. We believe that the proposed models will provide practitioners a new and robust tool for modeling directly the PD term structure for multi-period scenario loss projection, for CCAR stress testing and IFRS 9 expected credit loss (ECL) estimation.

Suggested Citation

  • Yang, Bill Huajian, 2017. "Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing," MPRA Paper 76271, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:76271
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/76271/1/MPRA_paper_76271.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Yang, Bill Huajian & Du, Zunwei, 2016. "Rating Transition Probability Models and CCAR Stress Testing: Methodologies and implementations," MPRA Paper 76270, University Library of Munich, Germany.
    4. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douw Gerbrand Breed & Niel van Jaarsveld & Carsten Gerken & Tanja Verster & Helgard Raubenheimer, 2021. "Development of an Impairment Point in Time Probability of Default Model for Revolving Retail Credit Products: South African Case Study," Risks, MDPI, vol. 9(11), pages 1-22, November.
    2. Achim Luminita-Georgiana & Mitoi Elena & Turlea Ioan-Codrut, 2021. "A methodological approach to developing and validating IFRS 9 -LGD parameters," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 683-694, December.
    3. Luminita-Georgiana ACHIM & Elena MITOI & Marian Valentin MOLDOVEANU & Codrut-Ioan TURLEA, 2021. "Credit Scoring – General Approach in the IFRS 9 Context," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 19(162), pages 384-384, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bill Huajian, 2017. "Forward Ordinal Probability Models for Point-in-Time Probability of Default Term Structure," MPRA Paper 79934, University Library of Munich, Germany.
    2. Yang, Bill Huajian, 2014. "Modeling Systematic Risk and Point-in-Time Probability of Default under the Vasicek Asymptotic Single Risk Factor Model Framework," MPRA Paper 59025, University Library of Munich, Germany.
    3. Yang, Bill Huajian & Du, Zunwei, 2016. "Rating Transition Probability Models and CCAR Stress Testing: Methodologies and implementations," MPRA Paper 76270, University Library of Munich, Germany.
    4. Yang, Bill Huajian & Du, Zunwei, 2015. "Stress Testing and Modeling of Rating Migration under the Vasicek Model Framework - Empirical approaches and technical implementation," MPRA Paper 65168, University Library of Munich, Germany.
    5. Yang, Bill Huajian & Wu, Biao & Cui, Kaijie & Du, Zunwei & Fei, Glenn, 2019. "IFRS9 Expected Credit Loss Estimation: Advanced Models for Estimating Portfolio Loss and Weighting Scenario Losses," MPRA Paper 93634, University Library of Munich, Germany.
    6. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    7. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    8. Mendicino, Caterina & Nikolov, Kalin & Ramirez, Juan-Rubio & Suarez, Javier & Supera, Dominik, 2020. "Twin defaults and bank capital requirements," Working Paper Series 2414, European Central Bank.
    9. Paul Kupiec, 2007. "Financial stability and Basel II," Annals of Finance, Springer, vol. 3(1), pages 107-130, January.
    10. Marc Gürtler & Dirk Heithecker, 2006. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Schmalenbach Journal of Business Research, Springer, vol. 58(5), pages 554-587, August.
    11. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    12. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    13. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    14. World Bank Group, 2016. "Nigeria," World Bank Publications - Reports 25776, The World Bank Group.
    15. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    16. Josselin Garnier & Jean-Baptiste Gaudemet & Anne Gruz, 2021. "The Climate Extended Risk Model (CERM)," Papers 2103.03275, arXiv.org, revised Apr 2022.
    17. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, February.
    18. Caterina Mendicino & Kalin Nikolov & Juan Rubio-Ramirez & Javier Suarez, 2020. "Twin Default Crises," Working Papers 2020-01, FEDEA.
    19. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    20. Petr Jakubík, 2007. "Credit Risk and the Finnish Economy," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 1(3), pages 254-285, November.

    More about this item

    Keywords

    CCAR stress testing; impairment loan; IFRS 9 expected credit loss; PD term structure; forward PD; marginal PD; credit index; risk sensitivity; maximum likelihood;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:76271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.