Economics of big data: review of best papers for January 2018
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Working Papers 24301, National Bureau of Economic Research, Inc.
- Ginger Zhe Jin, 2018. "Artificial Intelligence and Consumer Privacy," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 439-462, National Bureau of Economic Research, Inc.
- Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 61-87, National Bureau of Economic Research, Inc.
- Magdalena Bennett & Peter Bergman, 2021.
"Better Together? Social Networks in Truancy and the Targeting of Treatment,"
Journal of Labor Economics, University of Chicago Press, vol. 39(1), pages 1-36.
- Magdalena Bennett & Peter Leopold S. Bergman, 2018. "Better Together? Social Networks in Truancy and the Targeting of Treatment," CESifo Working Paper Series 6848, CESifo.
- Bennett, Magdalena & Bergman, Peter, 2018. "Better Together? Social Networks in Truancy and the Targeting of Treatment," IZA Discussion Papers 11267, Institute of Labor Economics (IZA).
- Avi Goldfarb & Daniel Trefler, 2018. "AI and International Trade," NBER Working Papers 24254, National Bureau of Economic Research, Inc.
- Choi, Jay Pil & Jeon, Doh-Shin & Kim, Byung-Cheol, 2019.
"Privacy and personal data collection with information externalities,"
Journal of Public Economics, Elsevier, vol. 173(C), pages 113-124.
- Choi, Jay Pil & Jeon, Doh-Shin & Kim, Byung-Cheol, 2018. "Privacy and Personal Data Collection with Information Externalities," TSE Working Papers 17-887, Toulouse School of Economics (TSE), revised Jan 2019.
- Ginger Zhe Jin, 2018. "Artificial Intelligence and Consumer Privacy," NBER Working Papers 24253, National Bureau of Economic Research, Inc.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joel Klinger & Juan Mateos-Garcia & Konstantinos Stathoulopoulos, 2021. "Deep learning, deep change? Mapping the evolution and geography of a general purpose technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5589-5621, July.
- J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
- Gordon H. Hanson, 2021.
"Immigration and Regional Specialization in AI,"
NBER Working Papers
28671, National Bureau of Economic Research, Inc.
- Hanson, Gordon H., 2023. "Immigration and Regional Specialization in AI," SocArXiv 9a45d, Center for Open Science.
- Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019.
"Economic Policy for Artificial Intelligence,"
Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
- Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," NBER Chapters, in: Innovation Policy and the Economy, Volume 19, pages 139-159, National Bureau of Economic Research, Inc.
- Ajay K. Agrawal & Joshua S. Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," NBER Working Papers 24690, National Bureau of Economic Research, Inc.
- Avi Goldfarb & Joshua Gans & Ajay Agrawal, 2018. "Economic Policy for Artificial Intelligence," Working Papers id:12798, eSocialSciences.
- Ajay K. Agrawal & Joshua S. Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," Working Papers id:12823, eSocialSciences.
- Andrea Szalavetz, 2019. "Artificial Intelligence-Based Development Strategy in Dependent Market Economies - Any Room amidst Big Power Rivalry?," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 40-54.
- Jens Prüfer & Patricia Prüfer, 2020.
"Data science for entrepreneurship research: studying demand dynamics for entrepreneurial skills in the Netherlands,"
Small Business Economics, Springer, vol. 55(3), pages 651-672, October.
- Prüfer, Jens & Prüfer, Patricia, 2019. "Data Science for Entrepreneurship Research : Studying Demand Dynamics for Entrepreneurial Skills in the Netherlands," Other publications TiSEM 83a4ca9e-c0cd-4786-ac8c-9, Tilburg University, School of Economics and Management.
- Prüfer, Jens & Prüfer, Patricia, 2019. "Data Science for Entrepreneurship Research : Studying Demand Dynamics for Entrepreneurial Skills in the Netherlands," Discussion Paper 2019-005, Tilburg University, Center for Economic Research.
- Davide Proserpio & John R. Hauser & Xiao Liu & Tomomichi Amano & Alex Burnap & Tong Guo & Dokyun (DK) Lee & Randall Lewis & Kanishka Misra & Eric Schwarz & Artem Timoshenko & Lilei Xu & Hema Yoganaras, 2020. "Soul and machine (learning)," Marketing Letters, Springer, vol. 31(4), pages 393-404, December.
- Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
- Li, Chengming & Xu, Yang & Zheng, Hao & Wang, Zeyu & Han, Haiting & Zeng, Liangen, 2023. "Artificial intelligence, resource reallocation, and corporate innovation efficiency: Evidence from China's listed companies," Resources Policy, Elsevier, vol. 81(C).
- Alexander Kopka & Dirk Fornahl, 2024. "Artificial intelligence and firm growth — catch-up processes of SMEs through integrating AI into their knowledge bases," Small Business Economics, Springer, vol. 62(1), pages 63-85, January.
- Nils Grashof & Alexander Kopka, 2023. "Widening or closing the gap? The relationship between artificial intelligence, firm-level productivity and regional clusters," Bremen Papers on Economics & Innovation 2304, University of Bremen, Faculty of Business Studies and Economics.
- Dominic Chalmers & Niall G. MacKenzie & Sara Carter, 2021. "Artificial Intelligence and Entrepreneurship: Implications for Venture Creation in the Fourth Industrial Revolution," Entrepreneurship Theory and Practice, , vol. 45(5), pages 1028-1053, September.
- Xueling Li & Xiaoyan Zhang & Yuan Liu & Yuanying Mi & Yong Chen, 2022. "The impact of artificial intelligence on users' entrepreneurial activities," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 597-608, May.
- Aránzazu Guillán Montero & David Le Blanc, 2019. "Lessons for Today from Past Periods of Rapid Technological Change," Working Papers 158, United Nations, Department of Economics and Social Affairs.
- Knudsen, Eirik Sjåholm & Lien, Lasse B. & Timmermans, Bram & Belik, Ivan & Pandey, Sujit, 2021. "Stability in turbulent times? The effect of digitalization on the sustainability of competitive advantage," Journal of Business Research, Elsevier, vol. 128(C), pages 360-369.
- Lili Yan Ing & Gene Grossman & David Christian, 2022. "Digital Transformation:‘Development for All’?," Chapters, in: Lili Yan Ing & Dani Rodrik (ed.), New Normal, New Technologies, New Financing, chapter 7, pages 75-88, Economic Research Institute for ASEAN and East Asia (ERIA).
- Laura Abrardi & Carlo Cambini & Laura Rondi, 2022. "Artificial intelligence, firms and consumer behavior: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 969-991, September.
- Tesary Lin & Avner Strulov-Shlain, 2023. "Choice Architecture, Privacy Valuations, and Selection Bias in Consumer Data," Papers 2308.13496, arXiv.org.
- Yang Yi-wen & Tian Kai, 2024. "How Industrial Intelligence Affects High-Quality Economic Development," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 8495-8512, June.
- Lenz, Fulko, 2020. "Plattformökonomie – zwischen Abwehr und Wunschdenken," Zeitthemen 03, Stiftung Marktwirtschaft / The Market Economy Foundation, Berlin.
More about this item
Keywords
big data in economics; literature review;JEL classification:
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ICT-2018-04-23 (Information and Communication Technologies)
- NEP-PAY-2018-04-23 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:85520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.