A class of nonparametric density derivative estimators based on global Lipschitz conditions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Kairat Mynbaev & Carlos Martins-Filho & Aziza Aipenova, 2016. "A Class of Nonparametric Density Derivative Estimators Based on Global Lipschitz Conditions," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 591-615, Emerald Group Publishing Limited.
References listed on IDEAS
- Kairat Mynbaev & Carlos Martins-Filho, 2010.
"Bias reduction in kernel density estimation via Lipschitz condition,"
Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2009. "Bias reduction in kernel density estimation via Lipschitz condition," MPRA Paper 24904, University Library of Munich, Germany.
- Henderson, Daniel J. & Parmeter, Christopher F., 2012.
"Canonical higher-order kernels for density derivative estimation,"
Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
- Daniel J. Henderson & Christopher F. Parmeter, 2010. "Canonical Higher-Order Kernels for Density Derivative Estimation," Working Papers 2011-14, University of Miami, Department of Economics.
- Singh, Radhey S., 1987. "Mise of kernel estimates of a density and its derivatives," Statistics & Probability Letters, Elsevier, vol. 5(2), pages 153-159, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kairat Mynbaev & Carlos Martins-Filho, 2019.
"Unified estimation of densities on bounded and unbounded domains,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.
- Mynbayev, Kairat & Martins-Filho, Carlos, 2017. "Unified estimation of densities on bounded and unbounded domains," MPRA Paper 87044, University Library of Munich, Germany, revised Jan 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
- Henderson, Daniel J. & Parmeter, Christopher F., 2012.
"Normal reference bandwidths for the general order, multivariate kernel density derivative estimator,"
Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
- Daniel J. Henderson & Christopher F. Parmeter, 2011. "Normal Reference Bandwidths for the General Order, Multivariate Kernel Density Derivative Estimator," Working Papers 2011-15, University of Miami, Department of Economics.
- Henderson, Daniel J. & Parmeter, Christopher F., 2012.
"Canonical higher-order kernels for density derivative estimation,"
Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
- Daniel J. Henderson & Christopher F. Parmeter, 2010. "Canonical Higher-Order Kernels for Density Derivative Estimation," Working Papers 2011-14, University of Miami, Department of Economics.
- Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.
- Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015.
"Consistency and asymptotic normality for a nonparametric prediction under measurement errors,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," MPRA Paper 75845, University Library of Munich, Germany, revised 2014.
- Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
- Mynbaev, Kairat T. & Nadarajah, Saralees & Withers, Christopher S. & Aipenova, Aziza S., 2014.
"Improving bias in kernel density estimation,"
Statistics & Probability Letters, Elsevier, vol. 94(C), pages 106-112.
- Mynbaev, Kairat & Nadarajah, Saralees & Withers, Christopher & Aipenova, Aziza, 2014. "Improving bias in kernel density estimation," MPRA Paper 75846, University Library of Munich, Germany, revised 2014.
- Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
- Kairat Mynbaev & Carlos Martins-Filho, 2019.
"Unified estimation of densities on bounded and unbounded domains,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.
- Mynbayev, Kairat & Martins-Filho, Carlos, 2017. "Unified estimation of densities on bounded and unbounded domains," MPRA Paper 87044, University Library of Munich, Germany, revised Jan 2018.
- Sakhanenko, Lyudmila, 2017. "In search of an optimal kernel for a bias correction method for density estimators," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 42-50.
More about this item
Keywords
nonparametric derivative estimation; Lipschitz conditions;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:75909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.