IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/68686.html
   My bibliography  Save this paper

Predictive ability of three different estimates of “cay” to excess stock returns - A comparative study Germany & U.S -

Author

Listed:
  • Emara, Noha

Abstract

The results of (Lettau, M.; Ludvison, S.,(2001)) show that Cay-LL has a significant predictive power both in the in-sample and the out-of-sample forecast of excess return. Our study departs from Lettau, M.; Ludvison, S.,(2001) in adding and comparing other two estimates of “cay” namely “Cay-Ols’ and “Cay-Dls” besides “Cay-LL” for forecasting excess return in both Germany and U.S over the period 1969:2 to 2005:1. Using quarterly data for both Germany and U.S over the period 1969:2 to 2005:1. We find that Cay-Ols proved to have the strongest in-sample forecast and out-of-sample forecast of the nested models of excess stock returns over the treasury bill rate in the U.S. We also find that the three different methods of estimating cay, Cay-Ols, Cay-Dls and Cay-LL, do not have any significant effect in either the in-sample forecast or the out-of-sample forecast of nested models in Germany. Finally analyzing the out-of sample forecast of non-nested models, using the Diebold Mariano(DM) test, we find that for the case of U.S, Cay-ols, Cay-Dls or Cay-LL proved to have equal predictive accuracy. On the other hand for the case of Germany, neither Cay-Ols nor Cay-Dls have equal predictive accuracy when compared to Cay-LL.

Suggested Citation

  • Emara, Noha, 2014. "Predictive ability of three different estimates of “cay” to excess stock returns - A comparative study Germany & U.S -," MPRA Paper 68686, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:68686
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/68686/1/MPRA_paper_68686.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    2. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    3. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    2. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    3. Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023. "Evaluating forecast performance with state dependence," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    5. Sousa, Ricardo M., 2010. "Consumption, (dis)aggregate wealth, and asset returns," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 606-622, September.
    6. Rangvid, Jesper, 2006. "Output and expected returns," Journal of Financial Economics, Elsevier, vol. 81(3), pages 595-624, September.
    7. Mihai, Marius M. & Mansur, Iqbal, 2022. "Forecasting crash risk in U.S. bank returns—The role of credit booms," Journal of Corporate Finance, Elsevier, vol. 76(C).
    8. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    9. Boucher, Christophe, 2006. "Stock prices-inflation puzzle and the predictability of stock market returns," Economics Letters, Elsevier, vol. 90(2), pages 205-212, February.
    10. Bing Xu, 2015. "Oil prices and UK industry-level stock returns," Applied Economics, Taylor & Francis Journals, vol. 47(25), pages 2608-2627, May.
    11. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    12. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    13. Tom Engsted & Stig V. Møller & Magnus Sander, 2013. "Bond return predictability in expansions and recessions," CREATES Research Papers 2013-13, Department of Economics and Business Economics, Aarhus University.
    14. Abhyankar, Abhay & Sarno, Lucio & Valente, Giorgio, 2005. "Exchange rates and fundamentals: evidence on the economic value of predictability," Journal of International Economics, Elsevier, vol. 66(2), pages 325-348, July.
    15. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    16. Ekaterini Panopoulou & Sotiria Plastira, 2014. "Fama French factors and US stock return predictability," Journal of Asset Management, Palgrave Macmillan, vol. 15(2), pages 110-128, April.
    17. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    18. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    19. Noha Emara, 2014. "Predictive Ability of Three Different Estimates of “Cay†to Excess Stock Returns – A Comparative Study for South Africa and USA," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 3-18.
    20. Emara, Noha, 2014. "Predictive ability of three different estimates of “cay” to excess stock returns - A comparative study South Africa & U.S. -," MPRA Paper 68684, University Library of Munich, Germany.

    More about this item

    Keywords

    Forecast; Excess Return; In-sample; Out-of-sample; Nested Forecast;
    All these keywords.

    JEL classification:

    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:68686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.