IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/65514.html
   My bibliography  Save this paper

Forecasting Inflation in Tunisia Using Dynamic Factors Model

Author

Listed:
  • AMMOURI, Bilel
  • TOUMI, Hassen
  • Zitouna, Habib

Abstract

This work presents a forecasting inflation model using a monthly database. Conventional models for forecasting inflation use a small number of macroeconomic variables. In the context of globalization and dependent economic world, models have to account a large number of information. This model is the goal of recent research in the various industrialized countries as well as developing countries. With Dynamic Factors Model the forecast values are closer to actual inflation than those obtained from conventional models in the short term. In our research we devise the inflation in to “free inflation and administered inflation” and we test the performance of the DFM in different types of inflation namely administered and free inflation. We found that dynamic factors model leads to substantial forecasting improvements over simple benchmark regressions.

Suggested Citation

  • AMMOURI, Bilel & TOUMI, Hassen & Zitouna, Habib, 2015. "Forecasting Inflation in Tunisia Using Dynamic Factors Model," MPRA Paper 65514, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:65514
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/65514/1/MPRA_paper_65514.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/68455/8/MPRA_paper_68455.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur F. Burns, 1950. "New Facts on Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number annu50-1, June.
    2. Robert J. Gordon, 1997. "The Time-Varying NAIRU and Its Implications for Economic Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 11-32, Winter.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Jeff Fuhrer & George Moore, 1995. "Inflation Persistence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 127-159.
    5. Arthur F. Burns, 1950. "New Facts on Business Cycles," NBER Chapters, in: New Facts on Business Cycles, pages 1-83, National Bureau of Economic Research, Inc.
    6. Fuhrer, Jeffrey C., 2010. "Inflation Persistence," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 9, pages 423-486, Elsevier.
    7. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    8. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    9. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    10. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    11. Hervé Le Bihan, 2009. "1958-2008, avatars et enjeux de la courbe de Phillips," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(4), pages 81-101.
    12. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    13. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
    14. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    15. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    16. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    17. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    18. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1, June.
    19. A. W. Phillips, 1958. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," Economica, London School of Economics and Political Science, vol. 25(100), pages 283-299, November.
    20. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, October.
    21. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    22. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    23. James H. Stock & Mark W. Watson, 1993. "Introduction to "Business Cycles, Indicators and Forecasting"," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 1-10, National Bureau of Economic Research, Inc.
    24. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    25. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    26. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    27. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    3. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    4. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    7. Dandan Liu & Dennis Jansen, 2011. "Does a factor Phillips curve help? An evaluation of the predictive power for U.S. inflation," Empirical Economics, Springer, vol. 40(3), pages 807-826, May.
    8. repec:cuf:journl:y:2017:v:18:i:1:jensen is not listed on IDEAS
    9. Phiri, Andrew, 2015. "Examining asymmetric effects in the South African Philips curve: Evidence from logistic smooth transition regression (LSTR) models," MPRA Paper 64487, University Library of Munich, Germany.
    10. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    11. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.
    12. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    13. Ricardo Reis & Mark W. Watson, 2010. "Relative Goods' Prices, Pure Inflation, and the Phillips Correlation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 128-157, July.
    14. Christian Jensen, 2017. "Aggregate Evidence on Price Rigidities and the Inflation-Output Trade-Off: A Factor Analysis of Factor Shares," Annals of Economics and Finance, Society for AEF, vol. 18(2), pages 227-252, November.
    15. Ferreira, Diego & Palma, Andreza Aparecida, 2015. "Forecasting Inflation with the Phillips Curve: A Dynamic Model Averaging Approach for Brazil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 69(4), December.
    16. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    17. Marcellino, Massimiliano & Kapetanios, George, 2006. "Impulse Response Functions from Structural Dynamic Factor Models: A Monte Carlo Evaluation," CEPR Discussion Papers 5621, C.E.P.R. Discussion Papers.
    18. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    19. Canova, Fabio, 2002. "G-7 Inflation Forecasts," CEPR Discussion Papers 3283, C.E.P.R. Discussion Papers.
    20. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    21. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.

    More about this item

    Keywords

    Inflation; PCA; VAR; Dynamic Factors Model; Kalman Filter; algorithmic EM; Space-state; forecast.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:65514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.