IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/58370.html
   My bibliography  Save this paper

How to divide things fairly

Author

Listed:
  • Brams, Steven
  • Kilgour, D. Marc
  • Klamler, Christian

Abstract

We analyze a simple sequential algorithm (SA) for allocating indivisible items that are strictly ranked by n ≥ 2 players. It yields at least one Pareto-optimal allocation which, when n = 2, is envy-free unless no envy-free allocation exists. However, an SA allocation may not be maximin or Borda maximin—maximize the minimum rank, or the Borda score—of the items received by a player. Although SA is potentially vulnerable to manipulation, it would be difficult to manipulate in the absence of one player’s having complete information about the other players’ preferences. We discuss the applicability of SA, such as in assigning people to committees or allocating marital property in a divorce.

Suggested Citation

  • Brams, Steven & Kilgour, D. Marc & Klamler, Christian, 2014. "How to divide things fairly," MPRA Paper 58370, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:58370
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/58370/1/MPRA_paper_58370.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2014. "An algorithm for the proportional division of indivisible items," MPRA Paper 56587, University Library of Munich, Germany.
    2. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    3. Steven J. Brams & Daniel L. King, 2005. "Efficient Fair Division," Rationality and Society, , vol. 17(4), pages 387-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2017. "Maximin Envy-Free Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 26(1), pages 115-131, January.
    2. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2022. "Two-Person Fair Division of Indivisible Items when Envy-Freeness is Impossible," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
    3. Kilgour, D. Marc & Vetschera, Rudolf, 2018. "Two-player fair division of indivisible items: Comparison of algorithms," European Journal of Operational Research, Elsevier, vol. 271(2), pages 620-631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fedor Sandomirskiy & Erel Segal-Halevi, 2019. "Efficient Fair Division with Minimal Sharing," Papers 1908.01669, arXiv.org, revised Apr 2022.
    2. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2017. "Maximin Envy-Free Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 26(1), pages 115-131, January.
    3. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2014. "An algorithm for the proportional division of indivisible items," MPRA Paper 56587, University Library of Munich, Germany.
    4. Andreas Darmann & Christian Klamler, 2016. "Proportional Borda allocations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(3), pages 543-558, October.
    5. Haris Aziz, 2016. "A generalization of the AL method for fair allocation of indivisible objects," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 307-324, October.
    6. Steven Brams & D. Kilgour & Christian Klamler, 2012. "The undercut procedure: an algorithm for the envy-free division of indivisible items," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 615-631, July.
    7. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    8. Andreas Darmann & Christian Klamler, 2019. "Using the Borda rule for ranking sets of objects," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 399-414, October.
    9. Katarina Cechlarova & Bettina Klaus & David F.Manlove, 2018. "Pareto optimal matchings of students to courses in the presence of prerequisites," Cahiers de Recherches Economiques du Département d'économie 16.04, Université de Lausanne, Faculté des HEC, Département d’économie.
    10. Rudolf Vetschera & D. Marc Kilgour, 2013. "Strategic Behavior in Contested-Pile Methods for Fair Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 22(2), pages 299-319, March.
    11. Onur Kesten & Ayşe Yazıcı, 2012. "The Pareto-dominant strategy-proof and fair rule for problems with indivisible goods," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(2), pages 463-488, June.
    12. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2022. "Two-Person Fair Division of Indivisible Items when Envy-Freeness is Impossible," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
    13. RAMAEKERS, Eve, 2010. "Fair allocation of indivisible goods among two agents," LIDAM Discussion Papers CORE 2010087, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Nhan-Tam Nguyen & Dorothea Baumeister & Jörg Rothe, 2018. "Strategy-proofness of scoring allocation correspondences for indivisible goods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 101-122, January.
    15. Eve Ramaekers, 2013. "Fair allocation of indivisible goods: the two-agent case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 359-380, July.
    16. Dall'Aglio, Marco & Mosca, Raffaele, 2007. "How to allocate hard candies fairly," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 218-237, December.
    17. Cechlárová, Katarína & Fleiner, Tamás, 2017. "Pareto optimal matchings with lower quotas," Mathematical Social Sciences, Elsevier, vol. 88(C), pages 3-10.
    18. Kilgour, D. Marc & Vetschera, Rudolf, 2018. "Two-player fair division of indivisible items: Comparison of algorithms," European Journal of Operational Research, Elsevier, vol. 271(2), pages 620-631.
    19. Manurangsi, Pasin & Suksompong, Warut, 2017. "Asymptotic existence of fair divisions for groups," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 100-108.
    20. Rothe, Jörg & Schadrack, Hilmar & Schend, Lena, 2018. "Borda-induced hedonic games with friends, enemies, and neutral players," Mathematical Social Sciences, Elsevier, vol. 96(C), pages 21-36.

    More about this item

    Keywords

    Fair division; indivisible items; envy-freeness;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D6 - Microeconomics - - Welfare Economics
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D7 - Microeconomics - - Analysis of Collective Decision-Making
    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:58370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.