IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57099.html
   My bibliography  Save this paper

A condition for determinacy of optimal strategies in zero-sum convex polynomial games

Author

Listed:
  • Arias-R., Omar Fdo.

Abstract

The main purpose of this paper is to prove that if there is a non-expansive map relating the sets of optimal strategies for a convex polynomial game, then there exists only one optimal strategy for solving that game. We introduce the remark that those sets are semi-algebraic. This is a natural and important property deduced from the polynomial payments. This property allows us to construct the space of strategies with an infinite number of semi-algebraic curves. We semi-algebraically decompose the set of strategies and relate them with non-expansive maps. By proving the existence of an unique fixed point in these maps, we state that the solution of zero-sum convex polynomial games is determined in the space of strategies.

Suggested Citation

  • Arias-R., Omar Fdo., 2014. "A condition for determinacy of optimal strategies in zero-sum convex polynomial games," MPRA Paper 57099, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57099
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57099/1/MPRA_paper_57099.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blume, Lawrence E & Zame, William R, 1994. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Econometrica, Econometric Society, vol. 62(4), pages 783-794, July.
    2. Kubler, Felix & Schmedders, Karl, 2010. "Competitive equilibria in semi-algebraic economies," Journal of Economic Theory, Elsevier, vol. 145(1), pages 301-330, January.
    3. Jérôme Bolte & Stéphane Gaubert & Guillaume Vigeral, 2015. "Definable Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 171-191, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.
    2. Arias-R., Omar Fdo., 2014. "On the pseudo-equilibrium manifold in semi-algebraic economies with real financial assets," MPRA Paper 54297, University Library of Munich, Germany.
    3. Xiao Luo & Xuewen Qian & Yang Sun, 2021. "The algebraic geometry of perfect and sequential equilibrium: an extension," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 579-601, March.
    4. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    5. Kubler, Felix & Schmedders, Karl, 2010. "Competitive equilibria in semi-algebraic economies," Journal of Economic Theory, Elsevier, vol. 145(1), pages 301-330, January.
    6. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    7. Van Damme, Eric, 2002. "Strategic equilibrium," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 41, pages 1521-1596, Elsevier.
    8. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    9. Perea y Monsuwe, Andres & Jansen, Mathijs & Peters, Hans, 1997. "Characterization of Consistent Assessments in Extensive Form Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 238-252, October.
    10. Orrego, Fabrizio, 2011. "Demografía y precios de activos," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 22, pages 83-101.
    11. Fabrizio Germano, 2006. "On some geometry and equivalence classes of normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(4), pages 561-581, November.
    12. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    13. Levy, Yehuda John, 2022. "Uniformly supported approximate equilibria in families of games," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    14. Pimienta, Carlos, 2010. "Generic finiteness of outcome distributions for two-person game forms with three outcomes," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 364-365, May.
    15. Pimienta, Carlos, 2009. "Generic determinacy of Nash equilibrium in network-formation games," Games and Economic Behavior, Elsevier, vol. 66(2), pages 920-927, July.
    16. Predtetchinski, Arkadi, 2009. "A general structure theorem for the Nash equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 66(2), pages 950-958, July.
    17. Gintis, Herbert, 2009. "The local best response criterion: An epistemic approach to equilibrium refinement," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 89-97, August.
    18. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    19. Miquel Oliu-Barton, 2014. "The Asymptotic Value in Finite Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 712-721, August.
    20. Mark Voorneveld, 2006. "Probabilistic Choice in Games: Properties of Rosenthal’s t-Solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 105-121, April.

    More about this item

    Keywords

    determinacy; polynomial game; semi-algebraic set and function;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.