IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/55861.html
   My bibliography  Save this paper

Forecasting Time-Varying Correlation using the Dynamic Conditional Correlation (DCC) Model

Author

Listed:
  • Mapa, Dennis S.
  • Paz, Nino Joseph I.
  • Eustaquio, John D.
  • Mindanao, Miguel Antonio C.

Abstract

Hedging strategies have become more and more complicated as assets being traded have become more interrelated to each other. Thus, the estimation of risks for optimal hedging does not involve only the quantification of individual volatilities but also include their pairwise correlations. Therefore a model to capture the dynamic relationships is necessary to estimate and forecast correlations of returns through time. Engle’s dynamic conditional correlation (DCC) model is compared with other models of correlation. Performance of the correlation models are evaluated in this paper using only the daily log returns of the closing prices of the Peso-Dollar Exchange Rate and Philippine Stock Exchange index. Ultimately, Engle’s DCC model is adopted because of its consistency with expectations. Though generally negative, correlation between these two returns is not really constant as the results indicated. The forecast evaluation of the models was divided into in-sample and out-of-sample forecast performance with short-term (i.e., 22-day, 60-day, and 125-day) and medium-term (250-day and 500-day) rolling window correlations, or realized correlations, as proxies for the actual correlation. Based on the root mean squared error and mean absolute error, the integrated DCC model showed optimal forecast performance for the in-sample correlation patterns while the mean-reverting DCC model had the most desirable forecast properties for dynamic long-run forecasts. Also, the Diebold-Mariano tests showed that the integrated DCC has greater predictive accuracy in terms of the 3-month realized correlations than the rest of the models.

Suggested Citation

  • Mapa, Dennis S. & Paz, Nino Joseph I. & Eustaquio, John D. & Mindanao, Miguel Antonio C., 2014. "Forecasting Time-Varying Correlation using the Dynamic Conditional Correlation (DCC) Model," MPRA Paper 55861, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:55861
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/55861/1/MPRA_paper_55861.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Bautista, 2003. "Interest rate-exchange rate dynamics in the Philippines: a DCC analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 10(2), pages 107-111.
    2. Cappiello, Lorenzo & De Santis, Roberto A., 2005. "Explaining exchange rate dynamics: the uncovered equity return parity condition," Working Paper Series 529, European Central Bank.
    3. Rodolfo Aquino, 2005. "Exchange rate risk and Philippine stock returns: before and after the Asian financial crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 15(11), pages 765-771.
    4. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    5. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    6. Vargas, Gregorio A., 2008. "What Drives the Dynamic Conditional Correlation of Foreign Exchange and Equity Returns?," MPRA Paper 7174, University Library of Munich, Germany.
    7. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuper, Gerard H. & Lestano, 2007. "Dynamic conditional correlation analysis of financial market interdependence: An application to Thailand and Indonesia," Journal of Asian Economics, Elsevier, vol. 18(4), pages 670-684, August.
    2. Sofiane Aboura & Julien Chevallier, 2014. "Cross‐market spillovers with ‘volatility surprise’," Review of Financial Economics, John Wiley & Sons, vol. 23(4), pages 194-207, November.
    3. repec:ipg:wpaper:2014-469 is not listed on IDEAS
    4. repec:dau:papers:123456789/13359 is not listed on IDEAS
    5. Syriopoulos, Theodore & Roumpis, Efthimios, 2009. "Dynamic correlations and volatility effects in the Balkan equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 565-587, October.
    6. repec:dgr:rugccs:200602 is not listed on IDEAS
    7. Aboura, Sofiane & Chevallier, Julien, 2018. "Tail risk and the return-volatility relation," Research in International Business and Finance, Elsevier, vol. 46(C), pages 16-29.
    8. Aboura, Sofiane & Chevallier, Julien, 2015. "Volatility returns with vengeance: Financial markets vs. commodities," Research in International Business and Finance, Elsevier, vol. 33(C), pages 334-354.
    9. Sofiane Aboura & Julien Chevallier, 2014. "Cross-Market Spillovers with ‘Volatility Surprise’," Working Papers hal-04141310, HAL.
    10. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    11. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    13. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    14. David McMillan & Isabel Ruiz & Alan Speight, 2010. "Correlations and spillovers among three euro rates: evidence using realised variance," The European Journal of Finance, Taylor & Francis Journals, vol. 16(8), pages 753-767.
    15. Marshall, Andrew & Maulana, Tubagus & Tang, Leilei, 2009. "The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 250-259, December.
    16. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    17. Shi Chen & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "A first econometric analysis of the CRIX family," Papers 2009.12129, arXiv.org.
    18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    19. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    20. Mark, Joy, 2011. "Gold and the US dollar: Hedge or haven?," Finance Research Letters, Elsevier, vol. 8(3), pages 120-131, September.
    21. Panayiotis F. Diamandis & Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2012. "Asset allocation in the Athens stock exchange: a variance sensitivity analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 167-181, April.
    22. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    23. repec:cte:wsrepe:24552 is not listed on IDEAS
    24. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.

    More about this item

    Keywords

    dynamic conditional correlation; Peso-Dollar exchange rate; PSE index; hedging;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:55861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.