IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3926.html
   My bibliography  Save this paper

Les algorithmes de la modélisation : une analyse critique pour la modélisation économique

Author

Listed:
  • Buda, Rodolphe

Abstract

L'objet de ce papier n'est pas tant de présenter les principaux algorithmes utilisés en modélisation économique - nombre de manuels font des présentations de meilleure qualité et plus exhaustives - que d'en proposer une vision critique. Les modèles économiques, et plus particulièrement les modèles macroéconométriques, sont des représentations numériques qui, de ce fait, ont opéré des choix de simplification voire de réduction de la réalité. Revenir sur les algorithmes existants peut donc, nous l'espérons, constituer une étape vers la reformulation d'algorithmiques plus féconds pour la modélisation. Le problème de la modélisation consiste à se poser la question de savoir, compte tenu de l'état observé de l'économie et sous certaines hypothèses, quelle sera en mode projection, quelle serait (en mode simulation), l'état futur (vs l'état alternatif) de cette économie ? Depuis la phase de gestion de la banque de données qui requiert divers algorithmes de tri, jusqu'aux algorithmes d'analyse numérique impliqués dans les calculs matriciels d'estimation économétrique - pour être bref -, le fonctionnement de la modélisation macroéconométrique s'explique par des algorithmes . Il implique l'emploi d'une syntaxe, l'algorithmique, et d'un langage, les mathématiques. L'algorithme est une séquence d'instructions ordonnées et formalisées, permettant d'aboutir à la résolution du problème étudié. Peu d'ouvrages sont consacrés aux phases algorithmiques de la modélisation . Si les algorithmes visent tous à assister la décision (analyses rétrospective et prospective), ils sont loin de former une librairie homogène de programmes. Nous aborderons des algorithmes directement liés à un traitement numérique (estimation statistique, simulation optimisation). Mais nous consacrerons également quelques lignes à des algorithmes de nature apparemment "moins numériques", mais intervenant dans des phases déterminantes de la modélisation. Il s'agira d'une part des algorithmes permettant de structurer et/ou d'analyse des données ainsi que des algorithmes graphiques et ceux de communication. Enfin nous aborderons brièvement le problème de précision des calculs lié à l'arithmétique des ordinateurs. Délibérément, nous n'avons développé les aspects relatifs au Génie logiciel , de même que dans un souci de clarté, nous avons regroupé les programmes en annexe, lorsque la compréhension n'exigeait pas qu'ils accompagnent le texte. Notre présentation sera jalonnée de travaux algorithmiques et de références à nos notes de travail, réalisés dans le cadre de notre thèse de Doctorat.

Suggested Citation

  • Buda, Rodolphe, 2001. "Les algorithmes de la modélisation : une analyse critique pour la modélisation économique," MPRA Paper 3926, University Library of Munich, Germany, revised Jul 2004.
  • Handle: RePEc:pra:mprapa:3926
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3926/1/MPRA_paper_3926.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kendrick, David A & Amman, Hans M, 1999. "Programming Languages in Economics," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 151-181, October.
    2. Nicolaas J. Vriend, 2002. "Was Hayek an Ace?," Southern Economic Journal, John Wiley & Sons, vol. 68(4), pages 811-840, April.
    3. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buda, Rodolphe, 2005. "Numerical Analysis in Econom(etr)ic Softwares: the Data-Memory Shortage Management," MPRA Paper 9145, University Library of Munich, Germany, revised 2007.
    2. Buda, Rodolphe, 2005. "Relevance of an accuracy control module - implementation into an economic modelling software," MPRA Paper 36520, University Library of Munich, Germany.
    3. Rodolphe Buda, 2008. "Two Dimensional Aggregation Procedure: An Alternative to the Matrix Algebraic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 31(4), pages 397-408, May.
    4. Rodolphe Buda, 2015. "Data Checking and Econometric Software Development: A Technique of Traceability by Fictive Data Encoding," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 325-357, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buda, Rodolphe, 2005. "Numerical Analysis in Econom(etr)ic Softwares: the Data-Memory Shortage Management," MPRA Paper 9145, University Library of Munich, Germany, revised 2007.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    3. Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012. "Optimal control of nonlinear dynamic econometric models: An algorithm and an application," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
    4. Hugo Benítez-Silva & Eva Cárceles-Poveda & Selçuk Eren, 2011. "Effects of Legal and Unauthorized Immigration on the U.S. Social Security System," Working Papers wp250, University of Michigan, Michigan Retirement Research Center.
    5. Herings, P. J. J. & Polemarchakis, H., 2002. "Equilibrium and arbitrage in incomplete asset markets with fixed prices," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 133-155, April.
    6. Arnulfo Rodriguez, 2004. "Robust Control: A Note on the Timing of Model Uncertainty," Computing in Economics and Finance 2004 147, Society for Computational Economics.
    7. Peter B. Dixon & Maureen T. Rimmer, 2005. "Explaining a dynamic CGE simulation with a trade-focused back-of-the-envelope analysis: the effects of eCommerce on Australia," Chapters, in: Sisira Jayasuriya (ed.), Trade Theory, Analytical Models and Development, chapter 10, Edward Elgar Publishing.
    8. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    9. Arpita Chatterjee, 2013. "Globalization and Monetary Policy: An Empirical Analysis," Discussion Papers 2013-08, School of Economics, The University of New South Wales.
    10. Linnea Polgreen & Pedro Silos, 2008. "Capital-Skill Complementarity and Inequality: A Sensitivity Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(2), pages 302-313, April.
    11. Eduardo Haddad & Alexandre A. Porsse & Eduardo P. Ribeiro, 2006. "Modeling Interjurisdictional Tax Competition in a Federal System," ERSA conference papers ersa06p359, European Regional Science Association.
    12. David Kendrick & P. Mercado & Hans Amman, 2006. "Computational Economics: Help for the Underestimated Undergraduate," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 261-271, May.
    13. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    14. James Hansen & James McDonald & Panayiotis Theodossiou & Brad Larsen, 2010. "Partially Adaptive Econometric Methods For Regression and Classification," Computational Economics, Springer;Society for Computational Economics, vol. 36(2), pages 153-169, August.
    15. Di Nicolo, G. & Gamba, A. & Lucchetta, M., 2011. "Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking," Discussion Paper 2011-090, Tilburg University, Center for Economic Research.
    16. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    17. Doraszelski, Ulrich & Kryukov, Yaroslav & Borkovsky, Ron N., 2008. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," CEPR Discussion Papers 6733, C.E.P.R. Discussion Papers.
    18. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    19. Amman, Hans M. & Kendrick, David A., 1998. "Computing the steady state of linear quadratic optimization models with rational expectations," Economics Letters, Elsevier, vol. 58(2), pages 185-191, February.
    20. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.

    More about this item

    Keywords

    Computational Economics ; Economic Modeling ; Algorithms ; Quantitative Economics ; Modeling Softwares;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Simul in Wikipedia English
    2. Modèle (économie) in Wikipedia French

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.