IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/24844.html
   My bibliography  Save this paper

Simulation of interest rate options using ARCH

Author

Listed:
  • Bianchi, Carlo
  • Calzolari, Giorgio
  • Sterbenz, Frederic P.

Abstract

The autoregressive conditional heteroskedasticity (ARCH) estimation procedure provides a specification of the error terms as well as estimates of the coefficients. A simple interest rate equation is estimated using least squares and also using ARCH. Then the stochastic simulation methodology is extended to the ARCH process and Treasury Bond call options are evaluated. Interestingly when ARCH is compared to least squares it is found that the difference in coefficients estimates has a small effect, while the different simulation procedures have a large effect on the value of Treasury Bond call options.

Suggested Citation

  • Bianchi, Carlo & Calzolari, Giorgio & Sterbenz, Frederic P., 1991. "Simulation of interest rate options using ARCH," MPRA Paper 24844, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:24844
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/24844/1/MPRA_paper_24844.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    2. Calzolari, Giorgio, 1979. "Antithetic variates to estimate the simulation bias in non-linear models," Economics Letters, Elsevier, vol. 4(4), pages 323-328.
    3. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    4. Sterbenz, Frederic P & Calzolari, Giorgio, 1990. "Alternative Specifications of the Error Process in the Stochastic Simulation of Econometric Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 137-150, April-Jun.
    5. repec:bla:jfinan:v:43:y:1988:i:4:p:841-65 is not listed on IDEAS
    6. Ross, Stephen A, 1978. "A Simple Approach to the Valuation of Risky Streams," The Journal of Business, University of Chicago Press, vol. 51(3), pages 453-475, July.
    7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    2. Calzolari, Giorgio & Fiorentini, Gabriele, 1994. "Conditional heteroskedasticity in nonlinear simultaneous equations," MPRA Paper 24428, University Library of Munich, Germany.
    3. Calzolari, Giorgio & Fiorentini, Gabriele & Panattoni, Lorenzo, 1993. "Alternative estimators of the covariance matrix in GARCH models," MPRA Paper 24433, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    2. repec:dau:papers:123456789/5374 is not listed on IDEAS
    3. Gajda, Jan B. & Markowski, Aleksander, 1998. "Model Evaluation Using Stochastic Simulations: The Case of the Econometric Model KOSMOS," Working Papers 61, National Institute of Economic Research.
    4. Giorgio Calzolari & F. Di Iorio & G. Fiorentini, 1999. "Indirect Estimation of Just-Identified Models with Control Variates," Econometrics Working Papers Archive quaderno46, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Alexander Reisz, 1999. "Temporal Resolution of Uncertainty, the Investment Policy of Levered Firms and Corporate Debt Yields," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-044, New York University, Leonard N. Stern School of Business-.
    7. Theodore M. Barnhill, Jr & Marcos Rietti Souto, 2009. "Systemic Bank Risk in Brazil: A Comprehensive Simulation of Correlated Market, Credit, Sovereign and Inter‐Bank Risks," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 18(4), pages 243-283, November.
    8. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    9. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    10. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    11. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    12. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    13. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    14. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    15. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    18. Jorgensen, Peter Lochte, 2007. "Traffic light options," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3698-3719, December.
    19. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    20. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    21. repec:uts:finphd:40 is not listed on IDEAS
    22. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.

    More about this item

    Keywords

    ARCH model; simulation; interest rate; Treasury bond call options;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.