IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/21068.html
   My bibliography  Save this paper

Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System

Author

Listed:
  • Kitchen, John
  • Monaco, Ralph

Abstract

This paper outlines a method for making effective use of monthly indicators to develop a current-quarter GDP forecast. Estimates and projections of real GDP growth are usually used to describe how the economy is doing. But estimates of GDP are only available quarterly, and the first GDP estimate for a quarter is released late in the month following the end of the quarter. The lack of a timely, comprehensive economic picture may mean that policymakers and business planners may be as much as four months behind in recognizing a significant slowdown or acceleration in the economy. This problem is especially important around business cycle peaks or troughs, where there may be some evidence that the economy is changing direction. There are many less-comprehensive, but higher-frequency data series about the economy, however. The chief difficulty with using the multiple indicators is that different indicators can give different signals, and there is no agreed-upon way for aggregating the statistics to give a single-valued answer. In this paper, we describe the approach we have adopted at the Treasury Department to use a broad variety of high-frequency incoming data to construct “realtime” estimates of quarterly real GDP growth. We draw on the recent work by Stock and Watson and others and describe the indicators, the techniques, and the recent performance of the system.

Suggested Citation

  • Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  • Handle: RePEc:pra:mprapa:21068
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/21068/2/MPRA_paper_21068.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    4. Karen E. Dynan & Douglas W. Elmendorf, 2001. "Do provisional estimates of output miss economic turning points?," Finance and Economics Discussion Series 2001-52, Board of Governors of the Federal Reserve System (U.S.).
    5. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    6. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, vol. 83(Q 4), pages 4-20.
    7. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    2. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    3. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    4. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
    5. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    6. Dean Croushore & Tom Stark, 1999. "Does data vintage matter for forecasting?," Working Papers 99-15, Federal Reserve Bank of Philadelphia.
    7. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    8. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    9. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    10. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    11. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    12. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    13. van den Hauwe, Sjoerd & Paap, Richard & van Dijk, Dick, 2013. "Bayesian forecasting of federal funds target rate decisions," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 19-40.
    14. Andres Fernandez & Norman R. Swanson, 2009. "Real-time datasets really do make a difference: definitional change, data release, and forecasting," Working Papers 09-28, Federal Reserve Bank of Philadelphia.
    15. Dean Croushore & Tom Stark, 2002. "Is macroeconomic research robust to alternative data sets?," Working Papers 02-3, Federal Reserve Bank of Philadelphia.
    16. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    17. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    18. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    19. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    20. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.

    More about this item

    Keywords

    real time; forecasting; GDP;
    All these keywords.

    JEL classification:

    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.