IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1783.html
   My bibliography  Save this paper

Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm

Author

Abstract

The nearest correlation matrix problem is to find a valid (positive semidefinite) correlation matrix, R(m,m), that is nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q(m,m); m larger than 2. In the literature on this problem, 'nearest' is invariably defined in the sense of the least Frobenius norm. Research works of Rebonato and Jaeckel (1999), Higham (2002), Anjos et al. (2003), Grubisic and Pietersz (2004), Pietersz, and Groenen (2004), etc. use Frobenius norm explicitly or implicitly. However, it is not necessary to define 'nearest' in this conventional sense. The thrust of this paper is to define 'nearest' in the sense of the least maximum norm (LMN) of the deviation matrix (R-Q), and to obtain R nearest to Q. The LMN provides the overall minimum range of deviation of the elements of R from those of Q. We also append a computer program (source codes in FORTRAN) to find the LMN R from a given Q. Presently we use the random walk search method for optimization. However, we suggest that more efficient methods based on the Genetic algorithms may replace the random walk algorithm of optimization.

Suggested Citation

  • Mishra, SK, 2004. "Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm," MPRA Paper 1783, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1783
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1783/1/MPRA_paper_1783.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raoul Pietersz & Patrick Groenen, 2004. "Rank reduction of correlation matrices by majorization," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 649-662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.
    2. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    2. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    3. Kohei Adachi, 2011. "Constrained principal component analysis of standardized data for biplots with unit-length variable vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 23-36, April.
    4. Grubisic, I. & Pietersz, R., 2005. "Efficient Rank Reduction of Correlation Matrices," ERIM Report Series Research in Management ERS-2005-009-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Yitian Qian & Shaohua Pan & Yulan Liu, 2023. "Calmness of partial perturbation to composite rank constraint systems and its applications," Journal of Global Optimization, Springer, vol. 85(4), pages 867-889, April.
    6. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    7. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
    8. Alexander Tchernitser & Dmitri Rubisov, 2009. "Robust estimation of historical volatility and correlations in risk management," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 43-54.
    9. Zhu, Xiaojing, 2015. "Computing the nearest low-rank correlation matrix by a simplified SQP algorithm," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 404-414.
    10. Qingna Li & Houduo Qi & Naihua Xiu, 2011. "Block relaxation and majorization methods for the nearest correlation matrix with factor structure," Computational Optimization and Applications, Springer, vol. 50(2), pages 327-349, October.
    11. Anders Løland & Ragnar Bang Huseby & Nils Lid Hjort & Arnoldo Frigessi, 2013. "Statistical Corrections of Invalid Correlation Matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 807-824, December.
    12. Yulan Liu & Shujun Bi & Shaohua Pan, 2018. "Equivalent Lipschitz surrogates for zero-norm and rank optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 679-704, December.
    13. Hebert, Pierre-Alexandre & Masson, Marie-Helene & Denoeux, Thierry, 2006. "Fuzzy multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 335-359, November.
    14. Shujun Bi & Le Han & Shaohua Pan, 2013. "Approximation of rank function and its application to the nearest low-rank correlation matrix," Journal of Global Optimization, Springer, vol. 57(4), pages 1113-1137, December.
    15. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.

    More about this item

    Keywords

    Nearest correlation matrix problem; Frobenius norm; maximum norm; LMN correlation matrix; positive semidefinite; negative semidefinite; positive definite; random walk algorithm; Genetic algorithm; computer program; source codes; FORTRAN; simulation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.