IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/16377.html
   My bibliography  Save this paper

Modelos de credit scoring: qué, cómo, cuándo y para qué
[Credit scoring models: what, how, when and for what purposes]

Author

Listed:
  • Gutierrez Girault, Matias Alfredo

Abstract

Introduced in the 70’s, credit scoring techniques became widespread in the 90’s thanks to the development of better statistical and computational resources. Nowadays almost all the financial intermediaries use these techniques, at least to originate credits. Credit scoring models are algorithms that in a mechanical way assess the credit risk of a loan applicant or an existing bank client, by means of statistical, mathematic, econometric or artificial intelligence developments. They are focused on the borrower’s creditworthiness or credit risk, regardless of his interaction with the rest of the portfolio. Although all of them yield fairly similar results, those most commonly used are probit and logistic regressions, and decision trees. In general they are used to evaluate the retail portfolio; corporate obligors are typically assessed with rating systems. Besides using different explanatory variables, the assessment of corporate borrowers implies revising qualitative aspects of their business that are difficult to standardize. Therefore the result of their assessment is better expressed with a rating. To clarify how credit scores are constructed and used, with the information contained in the BCRA’s public credit registry (Central de Deudores del Sistema Financiero (CENDEU)) we estimate a sample credit score and show how it operates with a probit model. The only purpose of this model is to show some stylized facts of credit scores, and by no means seeks to establish or indicate what are the best practices in their use, construction or interpretation.

Suggested Citation

  • Gutierrez Girault, Matias Alfredo, 2007. "Modelos de credit scoring: qué, cómo, cuándo y para qué [Credit scoring models: what, how, when and for what purposes]," MPRA Paper 16377, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:16377
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/16377/1/MPRA_paper_16377.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    3. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    4. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    5. Powell, Andrew & Mylenko, Nataliya & Miller, Margaret & Majnoni, Giovanni, 2004. "Improving credit information, bank regulation, and supervision : on the role and design of public credit registries," Policy Research Working Paper Series 3443, The World Bank.
    6. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    9. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    4. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    5. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    6. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    7. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    8. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    9. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    10. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    11. Abdelkader Derbali & Lamia Jamel, 2019. "Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 711-733, June.
    12. Rodrigo Alfaro A. & David Pacheco L. & Andrés Sagner T, 2011. "Dinámica de la Tasa de Incumplimiento de Créditos de Consumo en Cuotas," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 14(2), pages 119-124, August.
    13. Dinh, Thi Huyen Thanh & Kleimeier, Stefanie, 2007. "A credit scoring model for Vietnam's retail banking market," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 471-495.
    14. Carling, Kenneth & Rönnegård, Lars & Roszbach, Kasper, 2004. "Is Firm Interdependence within Industries Important for Portfolio Credit Risk?," Working Paper Series 168, Sveriges Riksbank (Central Bank of Sweden).
    15. Mestiri, Sami & Farhat, Abdejelil, 2018. "Credit Risk Prediction based on Bayesian estimation of logistic regression model with random effects," MPRA Paper 119960, University Library of Munich, Germany.
    16. Carling, Kenneth & Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2007. "Corporate credit risk modeling and the macroeconomy," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 845-868, March.
    17. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    18. Ulrich Kaiser & Andrea Szczesny, 2003. "Ökonometrische Verfahren zur Modellierung von Kreditausfallwahrscheinlichkeiten: Logit- und Probit-Modelle," Schmalenbach Journal of Business Research, Springer, vol. 55(8), pages 790-822, December.
    19. K.K. Jain & P.K. Gupta & Sanjiv Mittal, 2011. "Logistic Predictive Model for SMEs Financing in India," Vision, , vol. 15(4), pages 331-346, December.
    20. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.

    More about this item

    Keywords

    credit risk; credit scoring; binary probit;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.