IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15157.html
   My bibliography  Save this paper

Existence, continuity and utility representation of strictly monotonic preferences on continuum of goods commodity spaces

Author

Listed:
  • Hervés-Beloso, Carlos
  • Monteiro, Paulo Klinger

Abstract

It is an easy task for most commodity spaces, to find examples of strictly monotonic preference relations. For example, in the space of bounded sequences of real numbers.. However, it is not easy for spaces like the space of bounded functions defined in the real interval [0, 1]. In this note we investigate the roots of this difficulty. We show that strictly monotonic preferences on the space of bounded function on any set K always exist. However, if K is uncountable no such preference is continuous and none of them have a utility representation.

Suggested Citation

  • Hervés-Beloso, Carlos & Monteiro, Paulo Klinger, 2009. "Existence, continuity and utility representation of strictly monotonic preferences on continuum of goods commodity spaces," MPRA Paper 15157, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15157
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15157/1/MPRA_paper_15157.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toranzo, Margarita Estevez & Beloso, Carlos Herves, 1995. "On the existence of continuous preference orderings without utility representations," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 305-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Covarrubias, Enrique, 2011. "The equilibrium set of economies with a continuous consumption space," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 137-142, March.
    2. Covarrubias, Enrique, 2013. "The number of equilibria of smooth infinite economies," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 263-265.
    3. Covarrubias Enrique, 2010. "Regular Infinite Economies," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    2. Lumley, Thomas & Gillen, Daniel L., 2016. "Characterising transitive two-sample tests," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 118-123.
    3. Inoue, Tomoki, 2010. "A utility representation theorem with weaker continuity condition," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 122-127, January.
    4. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    5. Inoue, Tomoki, 2011. "A utility representation theorem with weaker continuity condition," Center for Mathematical Economics Working Papers 401, Center for Mathematical Economics, Bielefeld University.
    6. M. Ali Khan & Metin Uyanik, 2020. "Binary Relations in Mathematical Economics: On the Continuity, Additivity and Monotonicity Postulates in Eilenberg, Villegas and DeGroot," Papers 2007.01952, arXiv.org.

    More about this item

    Keywords

    utility representation/ strictly monotonic preferences;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • B50 - Schools of Economic Thought and Methodology - - Current Heterodox Approaches - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.