IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122168.html
   My bibliography  Save this paper

An efficient Shapley value for games with fuzzy characteristic function

Author

Listed:
  • Mallozzi, Lina
  • Vidal-Puga, Juan

Abstract

We consider cooperative games where the characteristic function is valued in the space of the fuzzy numbers. By using different fuzzy calculation methods to transform the game into a crisp cooperative one, we define and characterize an efficient extension of the Shapley value. This solution is a relevant member of a wider family of more general, fuzzy calculation method dependent extensions of the Shapley value.

Suggested Citation

  • Mallozzi, Lina & Vidal-Puga, Juan, 2024. "An efficient Shapley value for games with fuzzy characteristic function," MPRA Paper 122168, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:122168
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122168/1/MPRA_paper_122168.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    2. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. K. Michael Ortmann, 2000. "The proportional value for positive cooperative games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 235-248, April.
    4. Manfred Besner, 2019. "Axiomatizations of the proportional Shapley value," Theory and Decision, Springer, vol. 86(2), pages 161-183, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzhong Li & Genjiu Xu & Hao Sun, 2020. "Maximizing the Minimal Satisfaction—Characterizations of Two Proportional Values," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    2. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    3. Manfred Besner, 2020. "Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(3), pages 851-873, September.
    4. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.
    5. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    6. Besner, Manfred, 2019. "Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi payoff," MPRA Paper 92247, University Library of Munich, Germany.
    7. Zou, Zhengxing & van den Brink, René & Funaki, Yukihiko, 2021. "Compromising between the proportional and equal division values," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    8. Pérez-Castrillo, David & Sun, Chaoran, 2022. "The proportional ordinal Shapley solution for pure exchange economies," Games and Economic Behavior, Elsevier, vol. 135(C), pages 96-109.
    9. Besner, Manfred, 2022. "The grand surplus value and repeated cooperative cross-games with coalitional collaboration," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Florian Kellner & Andreas Otto, 2012. "Allocating CO 2 emissions to shipments in road freight transportation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(4), pages 451-479, January.
    11. Besner, Manfred, 2022. "Disjointly productive players and the Shapley value," Games and Economic Behavior, Elsevier, vol. 133(C), pages 109-114.
    12. Zhengxing Zou & Rene van den Brink & Yukihiko Funaki, 2020. "Compromising between the proportional and equal division values: axiomatization, consistency and implementation," Tinbergen Institute Discussion Papers 20-054/II, Tinbergen Institute.
    13. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.
    14. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    15. Besner, Manfred, 2021. "Disjointly and jointly productive players and the Shapley value," MPRA Paper 108511, University Library of Munich, Germany.
    16. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    17. Manfred Besner, 2019. "Axiomatizations of the proportional Shapley value," Theory and Decision, Springer, vol. 86(2), pages 161-183, March.
    18. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.
    19. Cubukcu, K. Mert, 2020. "The problem of fair division of surplus development rights in redevelopment of urban areas: Can the Shapley value help?," Land Use Policy, Elsevier, vol. 91(C).
    20. Besner, Manfred, 2021. "The grand dividends value," MPRA Paper 107615, University Library of Munich, Germany.

    More about this item

    Keywords

    Cooperative game; Shapley value; fuzzy set; efficiency;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.