IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122138.html
   My bibliography  Save this paper

Психометрические характеристики китайского клиента: тестирование программы Symanto
[Psychometric Characteristics of a Chinese Client: Testing the Symanto Program]

Author

Listed:
  • Zamoshnikova, Valeriya
  • Kashkin, Vasily

Abstract

The article presents the results of testing the Symanto Insights Platform program with the psychometric analysis function which can be used to study the client audience. All the main stages of working with the program, the results obtained in the process of work, as well as their analysis and comparison with human content analysis are presented.

Suggested Citation

  • Zamoshnikova, Valeriya & Kashkin, Vasily, 2023. "Психометрические характеристики китайского клиента: тестирование программы Symanto [Psychometric Characteristics of a Chinese Client: Testing the Symanto Program]," MPRA Paper 122138, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:122138
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122138/3/MPRA_paper_122138.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joachim Büschken & Greg M. Allenby, 2016. "Sentence-Based Text Analysis for Customer Reviews," Marketing Science, INFORMS, vol. 35(6), pages 953-975, November.
    2. Amado, Alexandra & Cortez, Paulo & Rita, Paulo & Moro, Sérgio, 2018. "Research Trends On Big Data In Marketing: A Text Mining And Topic Modeling Based Literature Analysis," European Research on Management and Business Economics (ERMBE), Academia Europea de Dirección y Economía de la Empresa (AEDEM), vol. 24(1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    2. Dongshin Kim & Dongkuk Lim & Jonathan A. Wiley, 2023. "Narrative Investment-Risk Disclosure & REIT Investment," The Journal of Real Estate Finance and Economics, Springer, vol. 66(2), pages 542-567, February.
    3. Moro, Sérgio & Lopes, Rui J. & Esmerado, Joaquim & Botelho, Miguel, 2020. "Service quality in airport hotel chains through the lens of online reviewers," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    4. Reyes-Menendez, Ana & Clemente-Mediavilla, Jorge & Villagra, Nuria, 2023. "Understanding STI and SDG with artificial intelligence: A review and research agenda for entrepreneurial action," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Mustofa Rochman Hadi, 2020. "Is Big Data Security Essential for Students to Understand?," HOLISTICA – Journal of Business and Public Administration, Sciendo, vol. 11(2), pages 161-170, August.
    6. Gupta, Shivam & Justy, Théo & Kamboj, Shampy & Kumar, Ajay & Kristoffersen, Eivind, 2021. "Big data and firm marketing performance: Findings from knowledge-based view," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    7. Oetzel, Sebastian & Graf, Denise, 2023. "Fragen oder Zuhören? Ein Vergleich von Kundenbefragungen und User Generated Content," PraxisWISSEN Marketing: German Journal of Marketing, AfM – Arbeitsgemeinschaft für Marketing, vol. 8(01/2023), pages 91-107.
    8. Davide Proserpio & John R. Hauser & Xiao Liu & Tomomichi Amano & Alex Burnap & Tong Guo & Dokyun (DK) Lee & Randall Lewis & Kanishka Misra & Eric Schwarz & Artem Timoshenko & Lilei Xu & Hema Yoganaras, 2020. "Soul and machine (learning)," Marketing Letters, Springer, vol. 31(4), pages 393-404, December.
    9. Allenby, Greg M., 2017. "Structural forecasts for marketing data," International Journal of Forecasting, Elsevier, vol. 33(2), pages 433-441.
    10. Schulz, Thomas & Zimmermann, Sina & Böhm, Markus & Gewald, Heiko & Krcmar, Helmut, 2021. "Value co-creation and co-destruction in service ecosystems: The case of the Reach Now app," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    11. Jonah Berger & Grant Packard & Reihane Boghrati & Ming Hsu & Ashlee Humphreys & Andrea Luangrath & Sarah Moore & Gideon Nave & Christopher Olivola & Matthew Rocklage, 2022. "Marketing insights from text analysis," Marketing Letters, Springer, vol. 33(3), pages 365-377, September.
    12. Woohyuk Kim & Sung-Bum Kim & Eunhye Park, 2021. "Mapping Tourists’ Destination (Dis)Satisfaction Attributes with User-Generated Content," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    13. Amit Kumar Kushwaha & Ruchika Pharswan & Prashant Kumar & Arpan Kumar Kar, 2023. "How Do Users Feel When They Use Artificial Intelligence for Decision Making? A Framework for Assessing Users’ Perception," Information Systems Frontiers, Springer, vol. 25(3), pages 1241-1260, June.
    14. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    15. Bharadwaj, Neeraj & Ballings, Michel & Naik, Prasad A., 2020. "Cross-Media Consumption: Insights from Super Bowl Advertising," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 17-31.
    16. Marina Johnson & Rashmi Jain & Peggy Brennan-Tonetta & Ethne Swartz & Deborah Silver & Jessica Paolini & Stanislav Mamonov & Chelsey Hill, 2021. "Impact of Big Data and Artificial Intelligence on Industry: Developing a Workforce Roadmap for a Data Driven Economy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(3), pages 197-217, September.
    17. Sotaro Katsumata & Seungjin Kim, 2020. "The Text-Score Allocation Model: Finding Latent Topics of Online Review Documents and Multi-Item Ratings," Discussion Papers in Economics and Business 20-01, Osaka University, Graduate School of Economics.
    18. Garner, Benjamin & Thornton, Corliss & Luo Pawluk, Anita & Mora Cortez, Roberto & Johnston, Wesley & Ayala, Cesar, 2022. "Utilizing text-mining to explore consumer happiness within tourism destinations," Journal of Business Research, Elsevier, vol. 139(C), pages 1366-1377.
    19. Kim, Da Yeon & Kim, Sang Yong, 2023. "Investigating the effect of customer-generated content on performance in online platform-based experience goods market," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    20. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.

    More about this item

    Keywords

    Psychometric characteristics; audience research; marketing research; artificial intelligence;
    All these keywords.

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.