IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/118650.html
   My bibliography  Save this paper

Прогнозирование Инфляции В России С Помощью Tvp-Модели С Байесовским Сжатием Параметров
[Forecasting inflation in Russia using a TVP model with Bayesian shrinkage]

Author

Listed:
  • Polbin, Andrey
  • Shumilov, Andrei

Abstract

Forecasting inflation is an important and challenging practical task. In particular, models with a large number of explanatory variables on relatively short samples can often overfit in-sample and, thus, forecast poorly. In this paper, we study the applicability of the model with Bayesian shrinkage of time-varying parameters based on hierarchical normal-gamma prior to forecasting inflation in Russia. Models of this type allow for possible nonlinearities in relationships between regressors and inflation and, at the same time, can deal with the problem of overfitting. Using monthly data for 2001-2022, we find that at short forecast horizons of 1-3 months Bayesian normal-gamma shrinkage TVP model with a large set of inflation predictors outperforms in forecasting accuracy, measured by mean absolute and squared errors, its linear counterpart, linear and Bayesian autoregression models without predictors, as well as naive models. At the horizon of six months, the autoregression model with Bayesian shrinkage exhibits the best forecast performance. As the forecast horizon rises (up to one year), statistical differences in the quality of forecasts of competing models of inflation in Russia decrease.

Suggested Citation

  • Polbin, Andrey & Shumilov, Andrei, 2023. "Прогнозирование Инфляции В России С Помощью Tvp-Модели С Байесовским Сжатием Параметров [Forecasting inflation in Russia using a TVP model with Bayesian shrinkage]," MPRA Paper 118650, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:118650
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/118650/1/MPRA_paper_118650.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    2. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    3. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    4. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    5. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    6. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    7. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    8. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polbin, Andrey & Shumilov, Andrei, 2024. "Прогнозирование Основных Российских Макроэкономических Показателей С Помощью Tvp-Модели С Байесовским Сжатием Параметров [Forecasting key Russian macroeconomic variables using a TVP model with Baye," MPRA Paper 120170, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    2. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    3. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    4. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    5. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    6. Börger, Carina & Kempa, Bernd, 2024. "Real exchange rate convergence in the euro area: Evidence from a dynamic factor model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 213-224.
    7. Florian Huber & Michael Pfarrhofer, 2021. "Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
    8. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    9. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    10. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
    11. Franz Xaver Zobl & Martin Ertl, 2021. "The Condemned Live Longer – New Evidence of the New Keynesian Phillips Curve in Central and Eastern Europe," Open Economies Review, Springer, vol. 32(4), pages 671-699, September.
    12. Verbrugge, Randal & Zaman, Saeed, 2023. "The hard road to a soft landing: Evidence from a (modestly) nonlinear structural model," Energy Economics, Elsevier, vol. 123(C).
    13. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    15. Ruhollah Eskandari & Morteza Zamanian, 2023. "Heterogeneous responses to corporate marginal tax rates: Evidence from small and large firms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(7), pages 1018-1047, November.
    16. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    17. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    18. Lukmanova, Elizaveta & Rabitsch, Katrin, 2023. "Evidence on monetary transmission and the role of imperfect information: Interest rate versus inflation target shocks," European Economic Review, Elsevier, vol. 158(C).
    19. Bhattacharya, Rudrani & Kapoor, Mrigankshi, 2020. "Forecasting Consumer Price Index Inflation in India: Vector Error Correction Mechanism Vs. Dynamic Factor Model Approach for Non-Stationary Time Series," Working Papers 20/323, National Institute of Public Finance and Policy.
    20. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.

    More about this item

    Keywords

    inflation; forecasting; time-varying parameter model; Bayesian shrinkage; normal-gamma prior;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:118650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.