IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1119.html
   My bibliography  Save this paper

NIRA-3: An improved MATLAB package for finding Nash equilibria in infinite games

Author

Listed:
  • Krawczyk, Jacek
  • Zuccollo, James

Abstract

A powerful method for computing Nash equilibria in constrained, multi-player games is created when the relaxation algorithm and the Nikaido-Isoda function are used together in a suite of MATLAB routines. This paper updates the MATLAB suite described in \cite{Berridge97} by adapting them to MATLAB 7. The suite is now capable of solving both static and open-loop dynamic games. An example solving a coupled constraints game using the suite is provided.

Suggested Citation

  • Krawczyk, Jacek & Zuccollo, James, 2006. "NIRA-3: An improved MATLAB package for finding Nash equilibria in infinite games," MPRA Paper 1119, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1119
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1119/1/MPRA_paper_1119.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffan Berridge & Jacek Krawczyk, "undated". "Relaxation Algorithms in Finding Nash Equilibrium," Computing in Economics and Finance 1997 159, Society for Computational Economics.
    2. Krawczyk, Jacek B., 2005. "Coupled constraint Nash equilibria in environmental games," Resource and Energy Economics, Elsevier, vol. 27(2), pages 157-181, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei Barbos & Yi Deng, 2015. "The Impact Of A Public Option In The U.S. Health Insurance Market," Economic Inquiry, Western Economic Association International, vol. 53(1), pages 508-521, January.
    2. Luke Snow & Vikram Krishnamurthy, 2024. "Adaptive Mechanism Design using Multi-Agent Revealed Preferences," Papers 2404.15391, arXiv.org.
    3. Boucekkine, Raouf & Krawczyk, Jacek B. & Vallée, Thomas, 2010. "Towards an understanding of tradeoffs between regional wealth, tightness of a common environmental constraint and the sharing rules," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1813-1835, September.
    4. Krawczyk, Jacek & Azzato, Jeffrey, 2006. "NISOCSol an algorithm for approximating Markovian equilibria in dynamic games with coupled-constraints," MPRA Paper 1195, University Library of Munich, Germany.
    5. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "The invisible polluter: Can regulators save consumer surplus?," MPRA Paper 9890, University Library of Munich, Germany.
    6. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    7. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "Can planners control competitive generators?," MPRA Paper 10395, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "The invisible polluter: Can regulators save consumer surplus?," MPRA Paper 9890, University Library of Munich, Germany.
    2. Bolei Di & Andrew Lamperski, 2022. "Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games," Dynamic Games and Applications, Springer, vol. 12(2), pages 394-442, June.
    3. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
    4. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "Can planners control competitive generators?," MPRA Paper 10395, University Library of Munich, Germany.
    5. Krawczyk, Jacek & Azzato, Jeffrey, 2006. "NISOCSol an algorithm for approximating Markovian equilibria in dynamic games with coupled-constraints," MPRA Paper 1195, University Library of Munich, Germany.
    6. Boucekkine, Raouf & Krawczyk, Jacek B. & Vallée, Thomas, 2010. "Towards an understanding of tradeoffs between regional wealth, tightness of a common environmental constraint and the sharing rules," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1813-1835, September.
    7. A. Heusinger & C. Kanzow, 2009. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 159-183, October.
    8. Gürkan, G. & Pang, J.S., 2009. "Approximizations of Nash equilibria," Other publications TiSEM de211d31-d77d-4211-9ca8-2, Tilburg University, School of Economics and Management.
    9. Elnaz Kanani Kuchesfehani & Georges Zaccour, 2015. "S-adapted Equilibria in Games Played Over Event Trees with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 644-658, August.
    10. Krawczyk, Jacek B & Townsend, Wilbur, 2014. "NIRA-GUI: A matlab application which solves for couple-constraint nash equibria from a symbolic specification," Working Paper Series 3414, Victoria University of Wellington, School of Economics and Finance.
    11. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    12. Flam, Sjur & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers 2006:9, Lund University, Department of Economics.
    13. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    14. Jacek B. Krawczyk & Mabel Tidball, 2016. "Economic Problems with Constraints: How Efficiency Relates to Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-19, December.
    15. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    16. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    17. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    18. Krawczyk, Jacek B., 2005. "Coupled constraint Nash equilibria in environmental games," Resource and Energy Economics, Elsevier, vol. 27(2), pages 157-181, June.
    19. Fabien Prieur & Martin Quaas & Ingmar Schumacher, 2019. "Mitigation strategies under the threat of solar radiation management," EconomiX Working Papers 2019-3, University of Paris Nanterre, EconomiX.
    20. Yann BRAOUEZEC & Keyvan KIANI, 2021. "Economic foundations of generalized games with shared constraint: Do binding agreements lead to less Nash equilibria?," Working Papers 2021-ACF-06, IESEG School of Management.

    More about this item

    Keywords

    Nikaido-Isoda function; Coupled constraints;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.